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Abstract

A variety of practical problems of �nite population inference can be addressed in the

framework of successive sampling discovery models � population units are assumed drawn

from a superpopulation distribution and then successively sampled according to a speci�ed

�size�biased� selection mechanism� Formal statistical analysis of discovery data under such

models is technically challenging� as exempli�ed by the likelihood analyses of Nair and

Wang 	
���� Assessment of uncertainties about superpopulation parameters and� more

critically� appropriate forms of predictive inference for the unsampled units in the �nite

population� are open issues that are addressed here from a Bayesian perspective� Moti�

vated by the likelihood analysis of Nair and Wang 	
���� we develop a formal Bayesian

approach to analysis in the same class of models� we show how simulation methods provide

for the computation of required posterior and predictive distributions of relevance� We

further develop model extensions to cover problems of uncertainty about �nite population

sizes� uncertainty about sample selection mechanisms� and other practical issues� Several

analyses of the oil reserve data of Nair and Wang 	
��� are used for illustration�

� Introduction

In a recent article� Nair and Wang 	
��� describe analysis of a successive sampling discovery model

characterised by two key features�

� �nite population inference assuming a superpopulation distribution for characteristics of the

�nite population�

� data drawn from the �nite population subject to size biased sampling�

In the context of a multivariate normal superpopulation model and speci�c functional forms of

size biasing� Nair and Wang 	
��� develop extended EM algorithms for maximum likelihood

estimation of superpopulation parameters� and various methods of extrapolation to inference about

characteristics of the �nite population being sampled� Discovery of oil reserves is their central� very

interesting example�

The current paper concerns Bayesian inference in these and more general contexts� Bayesian

inference in standard parametric models of in�nite populations subject to selection e�ects 	e�g�
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Bayarri and DeGroot� 
���� or generally subject to non�random sampling� has until recently been

hampered by computational di�culties� As described and illustrated in Kuo and Smith 	
���� and

West 	
���� however� Markov Chain Monte Carlo methods now allow what is often trivial coding

of routines to simulate posterior distributions in common models subject to truncation� censoring

and selection e�ects� Some �nite population problems are similarly amenable to simulation based

analysis� as indicated in West 	
���� that paper includes a simple treatment of a univariate succes�

sive sampling model� This current paper provides a full and extensive treatment of the multivariate

discovery models of Nair and Wang 	
���� with various practical generalisations� and illustrations�

We show how posterior and� critically� predictive inferences can be generated using simulation and

data augmentation� directly addressing the issues of uncertainty assessment in estimation and pre�

diction� We further develop analyses to provide inference on �nite population sizes� assessments of

sensitivity to hypothesised sampling bias mechanisms� and to answer various interesting predictive

questions�

The underlying statistical framework is as follows� Multivariate� non�negative observations are

obtained sequentially in time� It is assumed that the data values are characteristics of observational

units drawn without replacement from a �nite population� the population of values is denoted by

Y
def
� fy�� � � � � yNg� each yi being a p�vector for some �xed p � 
� The population size N is usually

assumed assumed known� Values yi relate to measures of �size� of the units� From Y � a sample

of speci�ed size n � N is successively drawn� without replacement� Sampling is supposed to be

biased� the selection probability for an unsampled unit i depends� at each stage in time� on both

yi and the characteristics of the other remaining units�

In the oil discovery application of Nair and Wang 	
���� for example� the four�dimensional

observations are estimates of surface area� volume� net�pay and depth of oil pools in an oil rich

area� or oil play 	see also the bibliography of Nair and Wang� As the observations measure the

physical sizes and locations of pools� their values are naturally supposed to be informative about the

discovery process� Larger pools have larger surface areas and other characteristics that enhance the

chance of discovery under investigation of the play� deeper pools are more di�cult to �nd� A general

framework for biased sampling supposes that units are selected with probabilities proportional to

some non�negative weight or selection function� w	y�

The superpopulation structure assumes an underlying distribution� assumed to have a density

f	yj�� from which the values in Y are randomly sampled� Here � is a collection of parameters char�

acterising the superpopulation model� f	yj� is most simply interpretable as a prior distribution for

the yi� though non�Bayesians assume a global frequency�based interpretation 	e�g� the distribution

of oil pool �sizes� worldwide� Analysis is aimed� primarily� at inference about characteristics of the

�nite population� such as predicting the set of values remaining� their total or other summaries�

Secondarily� this will involve inference about the underlying superpopulation parameters ��

Section � develops the Bayesian analysis of this general model� describing posterior simulation

via Gibbs sampling� Section � discusses details of multivariate log�normal superpopulation models

with log�linear size biasing� A �rst analysis of oil reserve data from Nair and Wang 	
��� appears

in Section �� providing comparisons with the likelihood analysis and illustrating Bayesian inference�

Section � concerns uncertainty about the population size N and extends analysis to incorporate

estimation of N� This is illustrated in some further analyses Section �� where we also focus on pre�

dictive inference and the changes in inference as data are successively recorded� Section � discusses

�
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uncertainty about weight functions and describes inference incorporating prior distributions over

weight functions� further analysis of the oil reserve data is summarised in this context�

� Posterior distributions and their simulation

By way of notation�

� Label the data so that� without loss of generality� the n observed values are y�� � � � � yn� sampled

in that order� Write D for the observed data and U for the unobserved values� so that Y �

fD�Ug with D � fy�� � � � � yng and U � fyn��� � � � � yNg�

� Let bj � w	yj� � � ��w	yn for j � 
� � � � � n� Then bj � � is the �weight� of the observed units

j� � � � � n�

� Let t	U �
PN

i�n�� w	yi be the total weight of the remaining� unobserved units U � note the

dependence on the unobserved units U �

The sampling structure is summarised as follows� First� the N elements of Y are randomly drawn

from f	yj�� Next� units i � 
� � � � � n are selected in that order� conditional on Y� and having

sampled units 
� � � � � i�
� the chance of selecting unit i as the next observation is w	yi�	t	U�bi�

Putting these pieces together gives the joint density

p	Y j� � p	D�U j� �
N �

	N � n�
f

nY
i��

w	yi

	t	U � bi
g

NY
j��

f	yj j�� 	


where the factorials count subsets of size n� 	Notation here ignores dependence on N and n for

clarity� Hence the density of the observed data D is

p	Dj� �
N �

	N � n�

Z
� � �

Z
f

nY
i��

w	yi

	t	U � bi
gf

NY
j��

f	yj j�g
NY

j�n��

dyj �

Having observed D� this equation gives the likelihood function for �� Evaluation of the likelihood

at any point � involves N � n nested p�dimensional integrations� a daunting task in general� At

this point� Nair and Wang 	
��� embark on development of iterative EM solution of the likelihood

equations� With common forms of superpopulation density� this� and other standard approaches�

may produce adequate approximations to maximum likelihood estimates but estimating associated

uncertainties is very di�cult� Appropriate assessment of the implications of parameter uncertainties

on predictive inferences about unobserved features of the �nite population is similarly extremely

di�cult� Direct Bayesian analysis using traditional approximations is essentially impossible� The

structure of 	
 is much more tractable� and suggests that simulation of the posterior density

p	�jD can be performed by iteratively simulating the conditional posteriors p	�jY  � p	�jU�D

and p	U j��D � the standard Gibbs sampling paradigm� These two densities are detailed� based

on an assumed prior density p	��

A� For known U� 	
 implies

p	�jU�D � p	�
NY
j��

f	yj j�� 	�

In common models� a prior p	� that is conjugate to f	�j� implies a conjugate posterior that

may be directly sampled and evaluated�

�
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B� For known D and �� 	
 implies

p	U j��D � f
nY
i��

	t	U � bi
��g

NY
j�n��

f	yj j��

As the elements of U appear in complicated ways through t	U here� this joint density� in N�n

dimensions� is not easy to work with� The data augmentation concept helps out� however� to

induce conditional distributions that are easily simulated� as follows� Note that� for each i�

	t	U � bi�� �
R
�

�
e��t�U��bi��id�i and so

p	U j��D � f

nY
i��

Z
�

�

e��t�U��bi��id�ig
NY

j�n��

f	yj j�� 	�

With � � f��� � � � � �ng� 	� is the marginal density for U from a joint density for 	U��j��D

with the following de�ning conditionals�

� p	�j�� U�D �
Qn

i�� e
��t�U��bi��i � hence the �i are conditionally independent exponen�

tials� 	�ij�� U�D � Ex	t	U � bi� Note incidentally that � is conditionally independent

of � here�

� p	U j�� �� D� f
Qn

i�� e
�t�U��ig

QN
j�n�� f	yj j�� De�ning r �

Pn
i�� �i� we then have

p	U j�� �� D�
NY

j�n��

e�rw�yj �f	yj j�� 	�

Hence the elements of U are 	conditionally a random sample of size N �n with common

density proportional to e�rw�y�f	yj�� Note incidentally that U is conditionally indepen�

dent of D here�

Analysis via Gibbs sampling involves iteratively simulating the conditional posteriors in A and B�

as follows�

	a Choose an initial value of U and compute t	U �
PN

i�n�� w	yi�

	b Sample � from 	� conditional on the current U �

	c Similarly sample the exponentials � conditional on the current U � save only the summary

r �
Pn

i�� �i�

	d Draw U from 	� conditional on current values of r and ��

	e Return to 	b� and iterate�

This iterative scheme determines a Markov Chain in f�� Ug space whose stationary distribution is

the joint posterior p	�� U jD� Following some �burn�in� iterations� successive draws are saved as the

basis of summary inferences� write f�k� UkgKk�� for these samples� In addition to the raw posterior

samples� the known conditional distributions may be used in producing �nal approximations to

posterior quantities� Note also that draws are implicitly made from the posteriors for characteristics

of the �nite population � any functions of the elements of U � Suppose size	y represents an

�interesting� summary measure of �size� of population units� such as the net volume of an oil

pool with characteristics y� Then� for example� the total size of the remaining units is s	U
def
�PN

i�n�� size	yi� and the posterior for this total may be directly approximated by a histogram

�
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	or a smoothed version of it of the implied posterior sample fs	UkgKk��� Forecasts of the sizes of

future cases� in order� are similarly available� thus� for example� we are able to evaluate predictions

for units remaining in an hypothetical future discovery process� This is illustrated below�

Sampling the elements of U in 	� requires comment� The U values are a random sample

with common density proportional to e�rw�y�f	yj�� This makes sense � the observed data D are

sampled from f	yj� with probability proportional to w	y� an increasing function of y� so that

the remaining cases U will tend to be smaller as determined under this modi�ed density� Since

r � � the term e�rw�y� is decreasing� so the modi�ed density function for sampling the unobserved

units concentrates on smaller values than does f	yj�� As a result� the elements of U are a regular

selection sample 	Bayarri and DeGroot� 
��� � drawn from the in�nite population distribution

but with selection probabilities proportional to e�rw�y�� Technically� we still have the problem of

simulating these selection samples� Though f	yj� will typically be easily simulated� this is unlikely

to be true of the selection distribution in practical models� The selection structure provides for

sampling via rejection� Note simply that e�rw�y� � P 	x � rjy where� given the vector y� x is

exponentially distributed� 	xjy � Ex	w	y� then 	� is sampled as follows�

	i Draw y from f	yj� and� independently� u � U	�� 
�

	ii If log	
� u � �rw	y reject y and return to 	i� otherwise save y and stop�

Repeating this N � n times generates the required latent data U � fyn��� � � � � yNg�

� Log�normal model with log�linear weighting

Let x be the p�vector whose elements are the natural logs of the corresponding elements of y�

Suppose x � N	���� a p�variate normal distribution whose mean vector � and variance matrix �

determine the parameter � � f���g� Then f	yj� is multivariate log�normal� as in Nair and Wang

	
���� Further following these� and previous authors� assume the weighting of sampled units is

log�linear with w	y � ea
�x for some speci�ed p�vector a of non�negative elements� thus w	y is a

weighted geometric mean of the elements of y�

In this special model� conjugate priors for � lie in the normal�inverse Wishart class 	Press�


���� section ��
��� General results based on proper priors in this class are straightforward to

derive� For benchmark analysis� the usual reference prior p	� � j�j��p����� is appropriate� Under

this prior� which is used in data analyses below� the relevant conditional posterior in equation 	�

is as follows� Write  x and S for the sample mean vector and sum of squares matrix of the xi�

	i � 
� � � � � N� so that  x �
PN

i�� xi�N and S �
PN

i��	xi �  x	xi �  x�� Then under the posterior

	�� � given � is normal� N	 x���N� and � has the inverse Wishart distribution W��	S� p�N� p

	in the notation of Press� 
���� see section ��
��� This provides for simulation of � at point A

in Section �� Standard methods may be used to generate normal deviates� and inverse Wishart

variates are obtained by inverting Wishart draws� the latter may be 	and are below generated

using the technique of Odell and Fieveson 	
����

At point B� the main issue is simulation of the latent items U in equation 	�� Generally�

sampling via rejection as outlined can be implemented� though could be computationally expensive

since� at each step of the Gibbs iterations� the N�n sampled p�vectors are obtained at the expense

of rejecting possibly manymore� Sometimes this direct rejection method will be necessary� However�

with the special log�linear weight function� some e�ciency can be gained by mapping the rejection

�
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steps down from p to just one dimension� To see this� write z � a�x so that w	y � ez � Since the

rejection step only involves z� it makes sense to restrict the candidate draws to the one�dimensional

z alone� Now� under 	xj� � N	���� we have a marginal distribution 	zj� � N	a��� q with

q � a��a� and a set of conditional distributions 	xjz� � which are singular normal�

	xjz� � � N	��A	z � a�����AA�q� 	�

with A � �a�q� The corresponding conditionals 	yjz� � are the resulting multivariate log�normal

distributions� Now� we want to sample the distribution whose density is proportional to

e�rw�y�f	yj� �

Z
�

��

e�re
z

p	yjz� �p	zj�dz�

This is simulated as follows�

� Sample z from density proportional to e�re
z

p	zj� where 	zj� is the above univariate normal�

this is done via rejection as noted in section �� Once a sampled value is accepted� use it at the

next step�

� Given z� draw x from the multivariate normal in 	�� and transform to y via antilogs�

In the second step� x is drawn from the singular normal distribution p	xjz� �� A direct way to do

this is to use the singular variance matrix in terms of its singular value decomposition ��AA�q �

LDDL� where L is the matrix whose columns are eigenvectors of ��AA�q� and D is the diagonal

matrix of square roots of the corresponding eigenvalues� One diagonal element in D is zero due

to the singularity� let E represent the p 	 	p � 
 matrix obtained by deleting the corresponding

column of zeroes from LD� Then x is generated as x � ��A	z�a���E	 where 	 is a p�
 vector

of independent standard normal deviates�

Note that this dimensionality reduction process may be e�ected in any model whose weight

function w	y depends only on a linear function of the logged elements of y�

� A �rst analysis of oil reserve data

Oil deposit data in Table 
 of Nair and Wang 	
��� give estimated size characteristics of

oil pools in an oil play in the Rimbey�Meadowbrook reef chain located in central Alberta� the

discoveries having been made during 
��� and 
���� The data include estimated volume� surface

area� net pay and depth for each of the n � �� pools discovered during that period� so p � � and

y is the ��vector of these measurements in stated order� and x is the ��vector of logged values�

assumed drawn from the N	��� superpopulation prior subject to size biasing� Nair and Wang

analyse this data using w	y � exp	a�x with a� � 	�� ����� ����������� we use this weight function

here in preliminary analysis of this data� We also adopt the reference prior for � and �� though

note that in the area of application� there exists substantial expertise that should be used to explore

ranges of informative priors� and hence to the derived ranges of posterior inferences� We use the

reference prior as a benchmark� as usual� with which inferences under alternative priors and from

non�Bayesian approaches may be compared� we are particularly interested in comparing results

with the likelihood approach of Nair and Wang�

This �rst analysis assumes N � �� pools to compare with Nair and Wang 	
���� The Gibbs

sampling procedure is easily implemented� This requires initial values for theN�n � 
� unobserved

�
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vectors in U� Repeat simulations using various starting values have veri�ed the insensitivity to these

values of the posterior inferences reported here and in subsequent analyses in later sections� widely

di�ering starting values led to insigni�cant di�erences in reported posterior inferences� supporting

the assumption of convergence of the Gibbs sampling iterations� The simulation computations were

burnt�in for ����� iterations 	Raftery and Lewis� 
���� values of �� � and U sampled in these initial

iterations are not used in �nal inferences� ������ further iterations of the Gibbs sampling scheme

were performed� and every �fth set of values of �� � and U were saved to provide an approximate

sample of size K � �� ��� from the joint posterior p	���� U jD� These computations� with various

subsidiary calculations and data manipulation� take under �ve minutes on a DECstation ����!���

in RISC Fortan code written by the author� The output data are trivially summarised�

To provide comparison with the likelihood analysis� point estimates of � and � are quoted�

these are the Monte Carlo approximations to E	�jD and E	�jD computed by averaging the

����� simulated conditional means� E	�jD�Uk and E	�jD�Uk� Similar computations provide the

approximate posterior standard deviations quoted for �� The estimates for �� 
one posterior stan�

dard deviation in each case� appear below together with the MLEs and corresponding approximate

standard deviations from Nair and Wang 	
���� The elements are� in order� the means for Volume�

Area� Net pay and Depth� respectively�

E	��jD � �
��

 ����� ��
�
 ����� ����
 ����� ����
 ����

MLE� �����
 ����� ����
 ����� ��
�
 ���
� ����
 ����

It is notable that the MLEs overestimate the �rst three elements � the average volume� area and

net pay of oil pools� all measuring physical size � relative to the posterior mean� This corresponds

to negative skewness in the corresponding univariate marginal posterior densities� Posterior uncer�

tainties as measured by the quoted standard deviations are smaller than those associated with the

MLEs� As we shall note below� however� the likelihood analysis quite radically underestimates vari�

ation as described by � so that Bayesian predictive distributions�estimates of the superpopulation

density�re"ect much greater uncertainty than the likelihood analysis might suggest� This comment

is based on the posterior estimates of diagonal elements of E	�jD� given in the �rst column of the

table below� the corresponding MLEs are in parentheses� The remaining columns give posterior

estimates of correlations 
ik derived directly from E	�jD� again with MLEs in parentheses�

�kk 
�k 
�k 
	k 

k

���� 	

�
� 
��� 	
��� ���� 	���� ���� 	���� ����� 	�����

���� 	���� 
��� 	
��� ���� 	���� ����� 	�����

���� 	
��� 
��� 	
��� ����
 	�����

��
� 	���� 
��� 	
���

In view of the posterior means for the �kk � the variability in the superpopulation is apparently

quite seriously underestimated by the MLEs� The posterior estimates of correlations are� however�

in close agreement with the MLEs� Further study of the posterior distribution may be based on

the sampled values� or on more e�cient approximations to marginal posterior densities and other

features� There is� however� little intrinsic interest in parameter estimation� Predictions about

the remaining population units are the overriding issue � the superpopulation parameters � serve

mainly to structure the problem of inference about� in this case� the remaining oil pools� Consider�

for example� inference about the total volume of oil remaining in the current reserve� namely

�
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t �
PN

i�n�� yi�� where yi� is the �rst 	log volume element of the vector yi� Each simulated draw

from p	U jD provides a simulated value from p	tjD simply by summing the appropriate elements

of the sampled yi� An histogram of the ����� sampled values in this analysis is unimodal with

mode near t � ��� million cubic metres� close to the rough MLE calculation in Nair and Wang

	
���� The density p	tjD is� however� highly skewed over larger totals� well supporting values up

to three or four million cubic metres 	and with a general shape similar to the third frame in Figure �

below� which is based on an extended analysis described below� Any single point estimate of total

potential volume is clearly misleading� and the MLE radically so� a full appreciation of appropriate

values for� and uncertainties about� t 	or other quantities is di�cult without access to the full

distribution p	tjD� Further discussion� with graphical summaries of predictive distributions� is

given below in extended analyses�

� Uncertainty about N

Assume now that we admit uncertainty about the �nite population size N � In many contexts�

substantial prior information may be available and can be incorporated in analysis through possible

priors� or classes or priors� over N � It may be that N and � are plausibly related a prior�i� In the

oil pool discovery problem� � includes parameters describing mean pool sizes and pool locations�

so that elicitation of oil experts� prior expectations of mean pool sizes and total oil content of

the play will naturally relate to functions of N and � together� inducing dependencies in the

prior� Clearly prior form and structure are heavily context dependent� Write m � N � n for the

number of items remaining undiscovered� In this paper� we restrict attention to independent priors

p	m� � � p	mp	�� for speci�c illustration of what is clearly a more general theory� Note that

this prior is implicitly dependent on n� and may be derived from an initial prior for N and � given

n� Generally� this may depend on n in ways other that through the simple logical constraint that

m � �� allowing for the possibilities that observing the sample size n may be informative about n

and!or � other than just via this constraint�

As in section �� the joint density for D and U in equation 	
 combines with p	m� � to give a

joint posterior for m� � and U � The conditional posteriors for � and U given m are just as derived

in that section with N � n�m �xed� Now that analysis is extended to include learning about m�

Again introducing the useful latent variables �� recalling r �
Pn

i�� �i� we see that

p	mj���� D�p	m p	Djm� ���� p	m

Z
p	D�U jm� ���dyn�� � � � dyn�m

�p	m�	r� �m	m� n��m� 	�

where� for �xed r and ��

�	r� � �

Z
�

�

e�rw�y�f	yj�dy� 	�

Note that � � �	r� �� 
�

The Gibbs sampling analysis of section � now extends to incorporate m� Referring to the

iterations outlined in items 	a�	e of that section� note simply that we can insert a step to simulate

a value of m from 	� following the drawing of � at point 	b� Otherwise� the analysis is modi�ed

only by adding an initial value of m to seed the burn�in iterations�

�
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The two technical steps in sampling 	� involve evaluating the required integral 	�� and then

performing the required simulation� The integral will not typically be analytically manageable� so

numerical methods are needed for that step� In the application of the next section the structure

is such that simple and e�cient Gauss Hermite quadrature is a natural method� and trivially

implemented� In other models� other approaches might be preferable� The simulation step is also

heavily model dependent � whether the resulting discrete posterior 	� is easily simulated depends

most heavily on the form of the prior p	m� Given an algorithm to evaluate the density function

p	m� we can of course evaluate 	� across a �nite range of values of m and hence normalise� thus

approximately determining the posterior for simulation�

One special class of priors permitting easy analysis form is as follows� Suppose the initial prior

for N given n is a discrete mixture of some h Poisson distributions truncated so that N � n� take

density function p	N �
Ph

i�� i�
N
i e��i�N � for N � n� n�
� � � � � and assume N is independent of

� in the prior� The speci�ed rates �i � �� and probabilities i may depend on both n and �� Under

the induced prior for m� equation 	� leads easily to

p	mj���� D �
hX
i��

�i f�i�	r� �g
me��i��r����m�� 	m � �

where �i � i�
n
i e
��i�����r���� � subject to unit sum� This is a mixture of Poisson posteriors in

which the term �	r� �� 
 acts to appropriately decrease the Poisson means from the initial values

�i� This conditional posterior for m is easily computable and trivially simulated once �	r� � is

computed�

	 Analysis of oil reserve data incorporating uncertainty about N

��
 Preliminaries

In the oil reserve data analysis in Section �� and with w	y � exp	a�y� the integral 	� is an

evaluation of the moment generating function of a multivariate log�normal density which cannot

be performed in closed form� Drawing on the univariate reduction in Section �� we can reduce 	�

to

�	r� � �

Z
�

��

exp	�rezp	zj�dz

where the density p	zj� is normal� 	zj� � N	a��� a��a�Note also that the existing Gibbs sampling

algorithm already evaluates the moments a�� and a��a each step� As a result� simple Gauss�Hermite

quadrature is an e�cient and accurate method of numerical integration in this case� In the examples

summarised below� nine�point quadrature is applied to approximately evaluate �	r� � in 	��

Consider now priors for N � Nair and Wang 	
��� discuss the sensitivity to the assumed value

for N of their MLE calculations and rough predictions� examining di�erences between analyses

based on N � ��� �� and ��� They also discuss issues of available prior information about N in

the oil reserve context� such prior information exists based on historical explorations and might be

incorporated to determine classes of appropriate priors for N � They conclude that� for predicting

total volume of oil in undiscovered pools and other �interesting� quantities� results di�er little from

those based on N �xed across the ����� range� One key reason is that the remaining pools are

�
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indicated as likely quite small� so that adding a few more to the tail will not unduly a�ect predictions

of total volume remaining� Inferences about the superpopulation parameters � are� however� much

more sensitive to N� even radically so� To the extent that the superpopulation model is introduced

mainly to provide structure and a framework for prediction about �what is left#�� this is not a major

concern� However� inference for N may be a real issue in other applications� Here we summarise

analyses based on a fairly di�use prior over the identi�ed range�that displayed in the �rst frame

of Figure �� This prior is an equally weighted mixture of eight Poissons with means at ��	����

this is close to uniform over the range ������ but puts appreciable mass on smaller and larger

values� Whether this prior makes scienti�c sense is not an issue here� the issue is whether or not

constraining N to the ����� range as in previous analyses masks features of the likelihood function

of interest and possible importance�

The iterative simulation procedure is easily implemented� and very fast so as to enable a great

deal of experimentation with di�erent models� data con�gurations� starting values and simulation

sample sizes� Such explorations have con�rmed the adequacy of the reported approximations to

posterior distributions below� In each case� posterior reconstructions are based on simulation sample

sizes of �����

	
� Analysis of the �rst �� discoveries

A �rst analysis considers only the �rst n � 
� discoveries� Figure 
 displays histograms of the

marginal posteriors for the four elements of the mean � of the superpopulation normal distribution�

Superimposed are the posteriors arising from analysis ignoring possible biases in sampling and also

the �nite population structure� these are just student T densities from the reference analysis of the


� observed values as a normal random sample� Typical� and here quite dramatic� over�estimation

of means is apparent for log volume� log area and� to a lesser extent� log net pay in the �incorrect�

analysis� correspondingly� mean log depth is underestimated� again as expected� Also evident is

the 	expected substantial over�precision of the direct random sampling analysis� Figure � displays

the mixture prior and the histogram of posterior draws for the population size N � The posterior

mass on values up to �� or �� is appreciable�

Predictive inferences of interest relate to characteristics of undiscovered oil pools and� more

speci�cally� features of pools likely to be discovered early in the continued exploration process� For

example� assuming a continued discovery process with the same selection mechanism� what are

the likely characteristics of the next pool to be discovered# And the next# At each stage of the

simulation analysis� a sampled value of N and the set U � fyn��� � � � � yNg is obtained� Recall that

the elements of U represent draws from the conditional posterior of the remaining N � n units but

are not ordered to account for the future discovery process� To obtain an appropriate ordering�

simply sample from the �nite set U without replacement and according to the selection weight

function� For example� a draw from the predictive distribution for the next pool to be discovered is

obtained by choosing yn�j with selection probability proportional to w	yn�j� 	j � 
� � � � � N � n�

Removing the selected case from U leaves N�n�
 items which can be further sampled this way to

successively produce draws from the predictive distributions for the second� third� and subsequent

discoveries assuming a continuation of the discovery sampling process�

Focus on just the volume of oil in remaining pools� Following the above procedure� the �rst

elements of the sampled ��vectors at each stage provide draws from the predictives distributions for


�
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volume of undiscovered pools and future discoveries� Figures � presents the predictive histogram

for log oil volume of the next pool� that numbered 
� in the continuing discovery process� For

reference� the X marked on the axis indicates the actual value eventually realised� the four Os

indicate the log volumes of the �nal four future pools� This out�of�sample prediction seems� in

the light of eventual observation� adequate� Similar computations lead to predictions for the ��rd

pool in the discovery sequence having observed just 
�� also appearing in Figure �� here again

future discoveries 
���� are marked on the axis� with the actual log volume of the ��rd discovery

indicated by X� Note that the eventually observed value is rather low� down in the left hand tail

of this predictive density� It appears that� at the time of the 
�th discovery� predictions about the

continuing process on this basis would have rather optimistic� Similar inferences can be derived

for other features of undiscovered items� For example� the log oil volume measures in each of the

vectors in each sampled set U can be used to calculate the implied total oil volume remaining� the

�nal frame in Figure � displays the corresponding predictive histogram in this analysis� for log total

remaining� Notice that these predictions all incorporate the uncertainty about the number of pools

remaining as each simulation step involves a value of N drawn from p	N jD� Figure � displays plots

corresponding to those in Figure �� but now transformed to the actual oil volume scale rather than

the log scale� Notice� in particular� the heavy tails of these densities�

	
� Analysis of all �� discoveries

A second analysis assumes availability of all n � �� oil pools recorded� as in Section � but now

under the mixture prior on N� Figure � displays margins of the posterior for � based on these ��

observations� these are to be compared with those in Figure 
 based on only the �rst 
� observations�

Superimposed again are the �incorrect� posterior T distributions from reference analysis of the ��

observations as if they were a normal random sample� Also� the X labels on the axes indicate

the maximum likelihood values for the elements of � obtained by Nair and Wang 	
���� One

contrast with Figure 
 is that posteriors for mean log volume� area and net pay are shifted to lower

values� and for log depth to 	slightly higher values� with the e�ects most marked on the volume

and area characteristics� This is induced by the fact that the last few observed pools 
���� are

really quite small relative to those up to discovery 
�� perhaps quite surprisingly so in retrospect�

this recalls the earlier comment about optimistic predictions of oil volume remaining at discovery


�� In addition� the posteriors are apparently rather more di�use than those based on just the

�rst 
� discoveries� Figure �	a indicates some reason why this is so� the corresponding posterior

for the population size N is wider spread than at the 
�th discovery� giving much greater mass to

lower values down to N � �� while continuing to appreciably support values up to ������ This

greater di�useness� or uncertainty� about the population size is re"ected in the increased spread in

the posterior for �� What has happened here is that the last few discoveries represent much smaller

pools than predicted after the 
�th� so that it now appears much more likely that the population is

close to exhaustion based on these few cases� the posterior mass and mode in the region of N � ��

in Figure �	a is induced by these cases� with the upper concentration of mass and the second mode

near N � �� based largely on the earlier discoveries�

Updated predictions about the future of the discovery process and oil volume remaining appear

in Figure �� to be compared with similar predictions made after 
� discoveries in Figure �� The

circles on the axes represent the actual volumes of the ��nd and ��rd discoveries� Notice� in
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particular� the shift to much lower values in predicting total oil volume remaining� the �nal �ve

discoveries are heavily in"uential in inducing a shift from the density appreciably supporting up

to �� or �� million cubic metres after 
� discoveries� to the range up to just � or � million cubic

metres after �� discoveries�

� Uncertainty about sampling biases

Some investigation of sensitivity to the assumed form w	y of the selection function is often

desirable� Though we do not address the issues associated with estimating w	y here� it is of

interest to explore deviations away from the assumed form and to try to account for data based

de�ciencies in the selection function within the analysis� In the oil reserve data example� early

discovery of very small pools or late discovery of very large pools are potentially very in"uential

observations that may distort inferences about � and further predictions� if allowance can be made

for such events by suitably modifying the selection mechanisms� then such distortions of inferences

can be ameliorated� Additionally� information about deviations away from the assumed selection

mechanism can be fed�back to adapt in future inferences� A rather simple mechanism for doing

this is developed here�

Modify the basic selection mechanism as follows� assume that a population unit i� having

characteristics yi� is observed with probability proportional to �iw	yi where w	� is the nominal

weight function used so far� and the �i are positive quantities representing possible deviations

away from the nominal form� Suppose further that the �i are �random e�ects� drawn as a random

sample from some speci�ed prior p	�i� i � 
� � � � � N� With these assumptions� there is no notion

of predicting deviations away from the nominal selection mechanism� rather we have a model

which allows such deviations 	to degrees determined by p	�i and hence provides an approach�

via posterior inference for the weight multipliers �i� for post�data assessment of such deviations�

Additionally� estimation of� and uncertainties about� the �i will feed through to predictive inference

for the unobserved segment of the population�

In particular� assume the �i are randomly sampled from a gamma prior� �i � G	�� � with

p	�i � ����i exp	���i for some � � �� Then E	�i � 
� and so w	y is the prior expected value

for the selection function� Likely degrees of variation away from this expectation are determined

by the hyperparameter �� assumed speci�ed� If we choose � large� the �i will not deviate much

from unity� so that sensitivity analysis is really impossible� We proceed to analysis in the context

of the general model in Section �� In the development of Section � 	extended to include learning

on N too� include now the weight vector � � f�i� � � � � �Ng in the conditioning of all posterior

distributions� the analysis described there applies with the simple modi�cation that the weights

w	yi are replaced by �iw	yi throughout� Thus� given a value for �� the posterior p	�� U�N jD��

may be sampled as already described for the special case �i � 
� The modi�cation to include �

implies that

� bj �
Pn

i�j �iw	yi for j � 
� � � � � n� and

� t	U � t	U� � �
PN

i�n�� �iw	yi�

note the original de�nitions apply if �i � 
 for each i�

Hence� Gibbs sampling can proceed if each iteration is augmented by a step to simulate �

from an appropriate conditional posterior distribution� The appropriate distribution is developed


�
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by noting� from the development after equation 	�� that

p	D�U��jN� �� ��
nY
i��

�iw	yie
��i�t�U��bi�

as a function of �� This easily reduces to

p	D�U��jN� �� ��

�
nY
i��

�ie
�	iriw�yi�

�
NY

i�n��

e�	irw�yi�

where� for i � 
� � � � � n� ri �
Pi

j�� �j � and r � rn as in the original analysis of Section �� It is

now clear that the independent gamma priors for the �i are conjugate to this conditional likelihood

function� as a result� the �i are conditionally independent with p	�ijD�U�N��� � � p	�ijD�U��

given by

	�ijD�U�N��� ��

�
G	�� 
� �� riw	yi� for i � 
� � � � � n�
G	�� �� rw	yi� for i � n� 
� � � � � N�

These gamma posteriors are easily simulated� at each Gibbs iterate therefore� values of the �i
may be sampled to include their estimation and to account for the uncertainty about the weight

multipliers� Notice that the conditionals for weight modi�ers of undiscovered units are shifted

downwards relative to the prior� the means� for example� are E	�ijD�U�N� ���� ��	�� rw	yi

for i � n� this is reasonable� as larger undiscovered pools have larger baseline weights w	yi and

so� as they are not yet discovered� the expectation is that the weight modi�er is acting to decrease

discovery chances�

A further analysis of the full n � �� oil pools incorporates this extension with a gamma prior

based on � � �� The analysis of Section ��� is modi�ed only in this respect� Figure �	b displays the

resulting posterior for N� Comparison with Figure �	a indicates a marked shift to smaller values�

while retaining the bimodality� This is consistent with weight modi�ers that are smaller on the

larger pools discovered late in the process�a smaller population size would have led to any such

larger pools discovered earlier� and their later occurrence suggests lower selection probabilities� To

explore inferences about the weight modi�ers� Figure � displays partial summary information� The

simulation analysis provides samples from the posterior for �� For each j� the sampled �j values

are log transformed � the logged values can be expected to have a posterior closer to symmetry

than the untransformed value� and the prior for the logged values are close to symmetry � and

approximate posterior means and standard deviations computed� The �rst frame in Figure � gives

error bars plots for the �j in discovery order� the error bars represent one standard deviation either

side of the mean� For reference� the horizontal dashed lines represent �
 ����� essentially the prior

mean with one prior standard deviation error bars on the log beta scale� Notice that discoveries


� and 
�� particularly� and discovery �� to a lesser extent� have posteriors suggestive of rather

lower weights than the baseline weight function provides� This identi�es these pools as rather

larger than expected this late in the discovery process� con�rming the earlier suspicions about the

over�optimistic predictions based on the �rst 
� pools alone� The second frame in Figure � provides

a similar plot against the log linear quantities a�yj appearing in the baseline weight function� This

plot� together with additional possible displays against individual component elements of each yj �


�
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can be useful in indentifying possible functions relationships between the weight modi�ers and the

yj � perhaps leading to alternative functional forms for weight functions�
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Figure �
 Approximate posterior means and one standard deviation error bars

for the log weight modi�ers	 log	�j� 	j � 
� � � � � ��� in analysis of the full n � ��

available oil pools
 The �rst frame graphs these versus discovery order	 the

second against the linear function a�yj of the nominal selection weight function


The dashed lines represent approximate one standard deviation intervals from

the priors for the �j� symmetrically located about the approximate prior mean

of zero
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