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Abstract

This is a short tutorial on the EM algorithm, including modern
proofs of monotonicity, and several examples focusing on the use of
EM to handle heavy-tailed models (Laplace, Student) and on finite
mixture estimation.

1 The Algorithm

Consider a general scenario in which we have observed data x, and a set of
unknown parameters 6. Let us also assume some prior p(0) for the param-
eters, which could well be a flat prior. The a posteriori probability function
p(0]x) is proportional to p(x|0)p(@). Now, suppose that finding the MAP
estimate of @ would be easier if we had access to some other data y, that
is, it would be easy to maximize p(x,y|0)p(0), where p(x,y|0) is related to
p(x]0) via marginalization

p(x16) = / Py, x|6) dy. (1)

The expectation-mazimization (EM) algorithm is an iterative procedure which
can be shown to converge to a (local) maximum of the marginal a posteriori
probability function p(8|x) = p(x|0) p(0), without the need to explicitly ma-
nipulate the marginal likelihood p(x|@). EM was first proposed in [9], and
since then it has attracted a great deal of interest and stimulated a consider-
able amount of research. For example, the EM algorithm has been often used



in image restoration/reconstruction problems (see, e.g., [18], [19], [25], [26],
[30], [41], [45], [47], [50], [56]). Instances of the use of EM in statistics, com-
puter vision, signal processing, machine learning, and pattern recognition
are too numerous to be listed here. Several books have been fully devoted
to the EM algorithm, while many others contain large portions covering this
technique [34], [38], [51].

In its original formulation, EM is presented as an algorithm to perform
ML parameter estimation with missing data [9], [34], [38], [51]; i.e. the un-
observed y is said to be missing, and the goal is to find the ML estimate
of 8. Usually, z = (y,x) is called the complete data, while p(z|0) is termed
the complete likelihood function. The complete likelihood is supposed to be
relatively easy to maximize with respect to 8. In many cases, the missing
data is artificially inserted as a means of allowing the use of the EM algo-
rithm to find a difficult ML estimate. Specifically, when p(x|0) is difficult
to maximize with respect to 8, but there is an alternative model p(y, x|0)
which is easy to maximize with respect to 8, and such that p(x|@) is related
to p(y,x|0) via marginalization (Eq. (1)).

The concept of observed/complete data may also be generalized; the
observed data does not have to be a “portion” of the complete data (as
in the previous paragraph), but any non-invertible transformation of the
complete data, i.e., x = h(z), where z is the complete data. In this case,
the marginal likelihood is obtained by computing

pixio)= [ ptelo)de

where h™1(x) = {z : h(z) = x} (actually, the integral should be replaced by
a sum if the the set h~1(x) is composed of isolated points; a uniform notation
could be obtained with Stieltjes integrals [6]). For example, the complete
data may be a vector z € IR% and the observations may be only the absolute
values of the components, that is x = |z| € (IR})?, where |- | denotes the
component-wise absolute value [for example, |(—1,2,-3)] = (1,2,3)]. In
this case, h™'(x) = {z : |z| = x} contains 2¢ elements. In these notes, we
will not pursue this concept of complete/observewd data.

The EM algorithm works iteratively by alternatingly applying two steps:

the E-Step (expectation) and the M-Step (mazimization). Formally, let 5(”,

for t = 0,1,2,..., denote the successive parameter estimates; the E and M
steps are defined as:

E-Step: Compute the conditional expectation (with respect to the missing
y) of the logarithm of the complete a posteriori probability function,



log p(y, 0]x), given the observed data x and the current parameter
estimate 8" (usually called the Q-function):

)
]
x logp(8) + Ellog ply, x|0)|x, 8"

A(t)

Q08" = Eflogp(y,0]x)|x,8"

] (2)

~(t)
= logp(9>+/p(ylx,9 )log p(y,x|0) dy.

M-Step: Update the parameter estimate according to

~(t41)

0" = argmax 0(018"). (3)

The process continues until some stopping criterion is met.

Several generalizations, particularizations, and accelerated versions of
the EM algorithm have been proposed; see [24], [34], [38], [40], [51] and
references therein.

2 Monotonicity

Consider the function £(0) : IRP — IR, whose maximum with respect to € is
sought; this could be log p(x|8), in the maximum likelihood case, log p(x|0)+

logp(@), for MAP estimation. The EM algorithm can be shown to mono-

. . , . . ~(t+1
tonically increase £(6), i.e., the sequence of estimates verifies £ (0( )) >

& (5(“). This is a well-known result which was first proved in [9]. The mono-
tonicity conditions for generalized and modified versions of EM were further
studied in [55]. A simple and elegant proof recently proposed in [6] (which
we will review below) sees EM under a new light that opens the door to
extensions and generalizations: EM belongs to a class of iterative methods
called prozimal point algorithms (PPA). A related earlier result, although
without identifying EM as a PPA, can be found in [43].
A (generalized) PPA is defined by the iteration

~(t+1)

8" = argmas {€0) - pate, 5“))} , (4)

where (3, is a sequence of positive numbers and d(@, E(t)) is a penalty function
Y > 0 and d(0,8" “. The

verifying d(0,8" ) = 0 if and only if @ = 8"
original PPA, with d(@, 5“)) =[| 6 — g(t) |2, was proposed and studied in [36]



and [48]. Generalized versions, with penalty functions other than || 9—0" 112,

have been considered by several authors. For an introduction to PPA which
includes a comprehensive set of pointers to the literature, see [1] (Chapter
5).

Monotonicity of PPA iterations is a trivial consequence of the mono-
tonicity of the penalty function. From the definition of the iteration in Eq.

(4), we have
(®) ()

8" 8" > ¢

£@"™) - p,a@""" 8 ) (5)

because, by definition, the maximum of £(0) — 3, d[@, 5(”] is at 5(t+1), and

d[é(t)ﬁ(”} = 0. Consequently,

g(b\(t—&-l)) B 5(§(t)) > 3, d[a(t—l—l)’b\(t)] >0,
since d(b\(tﬂ),a(t)) > 0, which establishes that {5(5(t)), t=0,1,2,..} is a

non-decreasing sequence.
Another (equivalent) view of EM, sees it as a so-called bound optimiza-
tion algorithm (BOA) [27]. Behind the monotonicity of EM is the following

fundamental property of the Q-function: the difference £(0) — Q(0|§ t))

attains its minimum for @ = 5( t). This can be seen from
~(t+1) ~(t+1) ~(t4+1) A1) ~(t4+1) A1)
EO ) = 6 )-QO 16)+QO  8)
~(1) (b)) (1) A(t+1), ~(t)
> £07)-QO 16 )+QO )
1) ~t), () ~t), ~(t)
> 0 7)-Q 6 )+QO "0 )
~(1)
= &£(0), (6)

where the first inequality is due to the fact that £(0) — Q(9|§( t)) attains its
minimum for 6 = G(t), and the second inequality results from the fact that

Q(0|§(t)) attains its maximum for @ = 8"

equivalent to the PPA interpretation; since Q(9|§(t)) = £(0) — 5 d]e, g(t)],
we have that

. It is clear that this view is

£(0) - Q(08") = 3,/0,8"]
5

which, by construction, attains its minimum for 8 = 6
It turns out that EM is a PPA (as shown in the next paragraph) with



£(0) = logp(x|0) + log p(0) o< p(8]x), By = 1, and

A) A

10,8") = D [plyIx.8") |l p(ylx,0)] (7)

A®)

~(t) p(Y|X70 )
= x,0 Nlog4—l ™ g 8
[ o180 BE 5Ly ®)
= FE|lo pi(y\x,a(t)) X/O\(t) 9)

® plybx.0) |

is the Kullback-Leibler divergence between p(y|x, 5“)) and p(y|x,0) [4], [6].
Since the Kullback-Leibler divergence satisfies the conditions d(8, E(t)) >0
and d(6, 6“)) = 0 if and only if 8 = 9" (see, for example, [7]), monotonicity
of EM results immediately.

Let us now confirm that EM is a PPA with the choices expressed in the
previous paragraph. This can be done by writing Eq. (4) with the choices
mentioned in the previous paragraph (assuming a flat prior, for simplicity)
and dropping all terms that do not depend on 6:

~(t
p(ylx, 9" ~(t)

~(t41) )
x, 0
p(ylx,0)

7 = argmgx logp(0|x) — E | log

= argmax {log p(0) +logp(x(0) + E [logp(.VIx, )| x, 5@)} }

= argmax{logp(6) +  [lozp(y.x/6)|x.8"]} (10)

206"

(compare Eq. (10) with Eq. (2)).

The monotonicity of EM makes it dependent on initialization. In other
words, if the objective function p(@|x) is not concave (i.e., has several local
maxima) EM converges to a local maximum which depends on its starting
point. In problems with multimodal objective functions, strategies have to
be devised to address this characteristic of EM. 1)

In the so-called generalized EM algorithm (GEM), 6
(t)

is chosen not

necessarily as a maximum of Q(G\a ), but simply as verifying
A(t+1) A(t) () (1)
QO 167)=Qe 16 ).

Clearly, the proof of monotonicity of EM can be extended to GEM because
the inequality in Eq. (5) also applies to GEM iterations.



3 Convergence to a Stationary Point

Of course monotonicity is not a sufficient condition for convergence to a
(maybe local) maximum of p(8|x). Proving this convergence requires further

smoothness conditions on log p(0|x) and Dy, [p(y|x, 5“)) | p(y|x, 9)} with
respect to 6 (see [6], [51]). At a limit fixed point of the EM/PPA algorithm,

i.e., when t — oo, we have

~(c0) ~(c0)
0 =arg max {10gp(9!><) — DkL [p(ylx,é’ ) I p(y[x, 9)] } ;

since both terms are smooth with respect to 8, it turns out 5(00) must be a
stationary point, that is!

()
IDKL [p(y\x,e ) | Py, 9)}
Gzé(m) B 00

0logp(0|x)

00 =0

~(o0)

0=0

Since the Kullback-Leibler divergence DKL[p(y|x,§(OO)) Il p(y|x,0)] has a
minimum (which is zero) for 6 = 6", its partial derivative with respect

to 0, at 5(“’), is zero. We can can then conclude that the fixed points of
the EM/PPA algorithm are in fact stationary points of the marginal log-
likelihood function log p(0|x).

4 The EM Algorithm for Exponential Families

The EM algorithm becomes particularly simple in the case where the com-
plete data probability density function belongs to the exponential family [3].
When that is the case, we can write

p(y,X|0) = ¢(y,X> ¢(€(9)> exp{E(G)Tt(y,x)}
k
= $(z)(£(0)) expq > &(O)t(2) p (11)
j=1

where z = (y, x) denotes the complete data, t(y,x) = t(z) = [t1(2), ..., tx(z)]T
is the (k-dimensional) vector of sufficient statistics and &(@) the (also k-
dimensional) natural (or canonical) parameter. Let us write the E-step in

'Here, we are using % to denote gradient with respect to 6, in case it is multidimen-
sional.



Eq. (2) for this case, with respect to the canonical parameter (for which we
are assuming a flat prior; generalization to any prior p(£) is trivial)

Qe = / p(y[%.E”) [log 6(z) + log (&) + £7t(2)] dy
— [yx &) logola)dy + logule) + 7B [t(m)IxE"].
———

Gibbs free

independent of &
energy)

That is, the E-step consists in computing the conditional expectation of
the sufficient statistics, given the observed data and the current estimate of

~(t+1 ~(t
the parameter. To find é’( = we have to set the gradient of Q(E!é’( )) with
respect to & to zero, which leads to the following update equation:

dlog ¥ ()
g

~(t+1)

3 = Solution w.r.t. £ of (_

=F [t(y,x)]x,?ﬂ) . (12)

Now, recall that (see [3])

dlogy(§) OlogZ(§) )
5 = e = Eti(y,x)|€l,

which means that the M-step is equivalent to solving, with respect to &, the
following set of equations

Elti(y.%)|€] = E [tiiy. )%, €], for i=1,...k

In words, the new estimate of € is such that the (unconditional) expected
value of the sufficient statistics coincides with the conditional expected value
of the sufficient statistics, given the observations and the current parameter

~(t
estimate 5( ).

5 Examples

5.1 Gaussian variables with Gaussian noise

Let us consider a set of n real-valued previous observations g = {g1, ..., gn},
which are noisy versions of (unobserved) y = {fi, ..., fn}; the noise has zero
mean and (known) variance o2. Assume prior knowledge about the f;’s is
expressed via a common Gaussian probability density function N'(f;|u, 72),



with 1 and 72 both unknown. The goal is to perform inference about 72
and pu.

To implement the marginal maximum likelihood (MML) criterion we
have to compute the marginal

el = 1 [ o(Gialn ™) s
=1
x 1 [ polsi0®) o)
=1

x [[N(gilp, 7+ 0?)

i=1

which is a natural result since the mean of the g; is of course u, and its
variance 72 + 2. In this case, MML estimates are simply

1 n
1 = = E - 13
2 n P gj (13)

n

Y (g - -] (14)

Jj=1 n

2
S|~

where ()4 is the positive part operator defined as x4 = z, if x > 0, and
zy =0, if x <O0.

We chose this as the first example of EM because it involves a complete
likelihood function in exponential form, and because we have simple exact
expressions for the MML estimates of the parameters. Let us now see how
the EM algorithm can be used to obtain these estimates. Of course, in
practice, there would be no advantage in using EM instead of the simple
closed form expressions. Only in cases where such expressions can not be
obtained is the use of EM necessary.

The complete likelihood function is

p(y,glu,7%) = [ [N (@il fi, ) N (filp, 7°) (15)
=1

Since we are considering o2 as known, we can omit it from the parameteri-



zation and write this likelihood function in exponential form as

n

C_q.)2
p(y.glé) = (2;0)” eXP{—Z(fZQan’)}

i=1
?(y.8)
1\ n;ﬂ

()l

»(§)

M n 1 n f?

X eXP{2Zfi—TQZ2} (16)

=1 =1

exp{&’ t(y.g)}

where € = [¢1,6]7 = [u/72,1/72]T is the vector of canonical parameters,

and
Z fi
f2
Z

is the vector of sufficient statistics.
As seen above, the E-step involves computing the conditional expectation
of the sufficient statistics, given the observations and the current parameter

~(t
estimate 5( ). Due to the independence expressed in Eq. (15), it is clear
that

) O

n
plylg, o®, " ) = [[o(filgi, o 2D, 727);
i=1

It is a simple task to show that

()

(fl|927 ’/"Lt 7-2

):N fz

Using this result, we can write the conditional expectations of the sufficient



statistics, which is all that is required in the E-step:

’\Q(t) n

~(t) n ~ T
E [h(%g) 8,& } = ——n o + e Zgi
02 + 712 i=1
() 0o 1) 2
~(t) no?r2 1 g2 4 g;72
E [tQ(y,g) 8¢ } - T A, 2 %
2(c24+127) i=1 o2 4 72

Finally, to obtain the updated parameters, we have to solve Eq. (12). From
Eq. (16),

_Ology(§) — n&

= =n
961 & s
dlog ¢ (§) n <1 f%) no 2 2
0> \&tg) "2 ) 1
leading to the following updated estimates
1 7:\2(15) n
g+ — 70 52 A
m = — wot + 9i
o2 + 7'2(t) " ;
() 0o~ ~5®\
7_A2(t+1) _ o272 o (ﬂ(t+1)>2 + lz M(t)02 +gz‘(:)2
0% + 72 i=1 o2+ 72 N

where the positive part operator (-)4 appears because we are under the
constraint 72 > 0. Notice that the update equation for i(*+1) has a simple
meaning: it is a weighted average of the previous estimate fi{¥) and the mean
of the observations.

In Figure 1 we plot the successive estimates i) and 7) obtained with
a size n = 20 sample with 4 = 1, 7 = 1, and ¢ = 0.5. The horizontal
dashed line represents the exact MML estimate given by Egs. (13) and
(14). Observe how the EM estimates converge fast to these exact estimates.

The EM algorithm was initialized with 7(®) = 0 and 7?2(0) set to the sample
variance of the observations. In Figure 2 we repeat the experiment, now
with o = 2.5; observe how the convergence to the MML solutions is slower
(particularly for the estimate of 7).

5.2 Laplacian priors

Let us consider a simple Gaussian likelihood for a scalar observation g,

p(glf) = N(glf,0?) (18)

10
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Figure 1: Evolution of the EM estimates of p and 7 (for p = 1, 7 = 1,

and o = 0.5); the horizontal dashed line represents the exact MML estimate
given by Eqs. (13) and (14).

(where 02 is known) and the goal of estimating f. Now consider a zero-
mean Gaussian prior on f, but with unknown variance 72, i.e., p(f|7?) =
N(£]0,72). To complete the hierarchical Bayes model, we need a hyper-
prior; let us consider an exponential density

9 1 72
p(77) p exp{ ; 2 (19)
for 72 > 0, where 7 is a (known) hyper-parameter. This choice can be
justified by invoking that it is the maximum entropy prior for a positive
parameter with a given mean (the mean is 7).
The set of unknowns is (f,72), and the a posteriori probability density
function is

p(f,7%9) o< p(g|f) p(f17%) p(7°) (20)
(as usual, we omit known parameters). The marginal posterior on f is
wile) = [ pirlg (21)
0
x plolf) [ (I plrt) dr?, (22)
0

equivalent prior p(f)

The equivalent prior p(f), obtained by integrating with respect to 72, turns

out to be
1 2
p(f) = mexp{—\[} 1 (23)

11
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Figure 2: Evolution of the EM estimates of p and 7 (for p = 1, 7 = 1,
and o = 2.5); the horizontal dashed line represents the exact MML estimate

given by Egs. (13) and (14). Observe the slower convergence rate, when
compared with the plots in Figure 1.

which is called a Laplacian density and plotted in Fig. 3 for several values of
the parameter 7). Since the likelihood p(g|f) is Gaussian, the MAP estimate

is simply
Fus = agmin { 27—+ 2111} @1

the solution of which is

Inap = sign(g) (Igl - 02\[27>+ : (25)

In the previous equation, (-); denotes the “the positive part” operator which
is defined as x4 =z, if z > 0, and x; = 0, if z < 0. The notation sign(g)
stands for the sign of g, i.e., sign(g) = 1, if ¢ > 0, while sign(g) = —1 when
g < 0. The function in Eq. (25), which known as the soft-threshold, was pro-
posed in [11] and [12] to perform wavelet-based signal denoising/estimation

(see also [44]). For obvious reasons, the quantity tyap = 02\/% is called the

threshold.
In the multivariate case, we have the likelihood function for the observed
vector g

p(gly) = N(g/Hy, 0°T) (26)

where o2 is known, H is a matrix, and the goal is to estimate y (which is d-
dimensional) from g (which is n-dimensional). As above, we take a Gaussian

12



10

Figure 3: Laplacian probability density function (defined in Eq. (23))for
several values of the parameter 7.

prior for y under which the f;’s are assumed independent, zero-mean, and
with (unknown) variances 72. That is,

p(ylT) = N(yl0,7) (27)

where 7 = diag{7Z, ..., 7'3}. The hierarchical Bayes model is completed with
a set of independent exponential hyper-priors

d 2

() = [T 5 exni="

d
- 1 1
Ty = Sexp{— Y 77}, (28)
=1 n Tld n ; l

for 72 > 0, where 71 is a (known) hyper-parameter. The idea of placing

independent Gaussian priors, with independent variances, for each f; is re-
lated to the so-called automatic relevance determination (ARD) approach
described in [35] and [42]; however, in ARD, there is no hyper-prior for these
variances (or in other words, there is a flat hyper-prior).

The MAP estimate of y is given by

Saiar = argmax [ plely) p(y|) p(r) dr. (29)

Since both the likelihoods and the prior p(y|7) are factorized, this integra-
tion can be performed separately with respect to each TE leading to

R ) 8 gt
YMAP = argmin | Hf — g |2 + B Iyl (30)

In the previous equation, || - ||2 denotes the standard Euclidean norm, while
| - [l1 stands for the L; norm, i.e., || x ||1= >, |z;|; (Hf); stands for the

13



i-th component of vector Hf. Notice that Eq. (30) is a multidimensional
version of Eq. (24).

This type of mixed Lo/Lq criterion has been suggested as a way of pro-
moting sparseness of the estimate, i.e. to look for an estimate y such only
a few of its components are different from zero (see [5], [13], [31], [46], [52],
[54] and references therein). In some applications, the columns of matrix
H are seen as an over-complete set of basis functions. The goal is then to
obtain a representation of the observed vector g as a linear combination of
those basis functions, g = Hf, under a sparseness constraint, that is, such
that only a few elements of y are non-zero [5].

In the statistical regression literature, this criterion is known as the lasso
(standing for least absolute shrinkage and selection operator). The Lasso ap-
proach was proposed in [52] (see also [15]) as a compromise solution between
standard ridge regression (which results from a Gaussian prior on the coef-
ficients) and subset selection (where the best set of regressors is chosen).

We will see how to use the EM algorithm to solve Eq. (30). Clearly, the
unknown quantity is y, the observed data is g, and the missing data is 7.
The complete log-posterior from which we could easily estimate y if 7 was
observed is

logp(y|T,g) =logp(y,T,8) — logp(T,g) = log (p(gly)p(y|T)p(T)) + K,
——
indep. of y

where K is some constant independent of y. Inserting Eqgs. (26), (27), and
(28), and absorbing all terms that do not depend on y in constant K, we
obtain

1
logp(y|T,8) = 952 | Hy —g |5 — Z ) + K. (31)

We can now write the E-step as the computation of the expected value (with
respect to the missing data 7) of the right hand side of Eq. (31)

QyI§"Y) = 5oy | HF —glb—fz,f? =50 @

Again using the models in Eqgs. (26), (27), and (28), it is easy to show (by
applying Bayes law) that

. 1 5 1\ 12
pirl5 ) = [[ () 2o {79 (12 - %) - 2



and finally,

1 . 1
E [erﬂ - B [glffﬂ =
T T;

)

f,(t)’_l \/5 =" (33)
(2 ,’7 (2

Letting W®) = diag(wgt),wét), ...,w((;)), we can write the M-step (i.e., the
maximization of Eq. (32) with respect to y) as

yU = arg max { | Hy") — g |3 + o2 yTW(t)y} :
which has a simple analytical solution
-1
F+D = [a2w<t> +HTH| HTg. (34)

Summarizing, the E-step consists in computing the diagonal matrix W)
whose elements are given by Eq. (33), and the M-step updates the estimate
of y following Eq. (34).

Let us conclude by showing a simple regression example, using radial
basis functions (RBF). Consider a set of d (non-orthogonal) Gaussian-shaped

functions )
¢i(x) = exp {— (x;cl> } , fori=1,2,....d;

the goal is to approximate an unknown function g = ¢(x), of which we are
given a set of noisy observations {(x1,91), ..., (Zn, gn)}, as a linear combina-
tion of those basis functions:

d
U(@) =" fib;(x).
j=1

Since we do not have a generative model for the {z;, ¢ = 1,...,n}, the
observation model can be written as in Eq. (26) where y = [f1,..., fa]”,
g = [g1, .-, gn)7, and the element (i, j) of matrix H is given by H; ; = ¢;(z;).
In this example, we consider a true function that can actually be written as
Y(z) = Z;Ll fi ¢i(x), with d = 40, fo =2, fio = =2, fau = 3, faa = —4,
and all the 36 remaining f;’s equal to zero. The centers of the basis function
are fixed at ¢; = 51, for i = 1, ..., 40, and the width parameter h is set to 10.
The resulting function is plotted in Figure 4 (a), together with 200 noisy
observations placed at the integers 1,2, ...200, with noise standard deviation
equal to 0.8. After running the EM algorithm from these noisy observations,

15



with n = 0.15, the function estimate is the one plotted in Figure 4 (b). For
comparison, we also show a ridge estimate (also called weight decay in the
neural networks literature) with a zero-mean unit-variance Gaussian prior
on y, and maximum likelihood estimate, both in Figure 4 (c); notice how
these estimates are more affected by noise, specially in the flat regions of the
true function. Finally, Figure 4 (d) shows the elements of ¥ obtained under
the lasso (circles) and ridge (stars) criteria; observe how the lasso estimate
is dominated by a few large components, while the ridge estimate does not
exhibit this sparse structure.

e ) A True function
_____ Lasso estimate (via EM)

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

*
3r o,
.
2r s .
* * *
. +
1t
. * * N e *
Ofe cooo 80000 coocooo 800 00 000000 *000b04
° *
L+ * * %
-1 ;
o -
of ot +
3f T True function i | ’
g IR Ridge estimate . -3r
‘‘‘‘‘‘‘‘‘‘ Maximum likelihood L o
20 40 60 80 100 120 140 160 180 5 10 15 20 25 30 35 40

Figure 4: (a) True function (solid line) and observed noisy data (dots), for
o = 0.8. (b) Function estimate from the lasso criterion (solid line) and
the original function. (c) Ridge and maximum likelihood estimates. (d)
Elements of y for the lasso estimate (circles) and the ridge estimate (stars).

Finally, we mention that this approach can easily be extended to consider

o2 as an unknown to be estimated from the data.
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5.3 Laplacian noise: robust estimation

Let us consider the same type of hierarchical Bayes modelling but now fo-
cusing on the noise variance. Consider the observation model

gZ:f+u27 i:17'°'7n7

where we have n noisy observations of the same unknown quantity f for
which we have a flat prior p(f) =“constant”. If the noise samples are inde-
pendent, Gaussian, have zero mean, and common variance o2, the MAP /ML
estimate of f is

n n

_ . 1

fis = arg min Y lgi— 1) = - > i, (35)
i=1 =1

which is the well known least squares (LS) criterion. The main criticism on
the LS approach is its lack of robustness, meaning that it is too sensitive
to outliers. Outliers are observations that may not have been generated
according to the assumed model (the typical example being a variance much
larger than the assumed ¢?). Estimators that are designed to overcome
this limitation are called robust (see, for example, [21]). One of the best
known robust criteria is obtained by replacing the squared error in the LS
formulation by the absolute error, leading to what is usually called the least
absolute deviation (LAD) criterion

fLap = arg min > |g; = f1; (36)
=1

see [2] for a textbook devoted to the LAD criterion. The solution to this
optimization problem is well known. Let the set of sorted observations
be denoted as {fs,, fsy, s fs,}, Where {s1,s9,...,8,} is a permutation of
{1,2,...,n} such that fs;, < fs, < ... < fs,. Then, the solution of Eq. (36)
is

fsnﬂ < nisodd
2

fLap = (37)

any value in [fsn,fsnﬂ} < nis even,
2 2

or, in other words, fLAD is the median of the observation, that is, a value
that has an equal number of larger and smaller observations than it. We
now illustrate with a very simple example why this is called a robust es-
timator. Let the set of observations (after sorting) be 1,2,3,4,5,6,7,8,9.
Then, the mean and the median coincide, and both fiap and fig are equal

17



to 5. Now suppose we replace one of the observations with a strong out-
lier, 1,2,3,4,5,6,7,9,80; in this case, fLAD is still 5, while fLS is now 13,
highly affected by the outlier. Of course the outlier can affect the median;
for example if the data is —80,1,2,3,4,5,6,7,9, fLAD is now 4, but fLS
is (approximately) —4.7, thus much more sensitive to the presence of the
outlier.

The very notion of outlier seems to point the way to a hierarchical Bayes
formulation of the problem. Suppose that it is known that the noise is zero-
mean Gaussian, but the specific variance of each noise sample u;, denoted
02, is not known in advance. Then it is natural to include these variances
in the set of unknowns (now (f,0%,...,02)) and provide a prior, which we

assume to have the form p(o?, ...,02) = p(0?) - - - p(c2). Since we are actually
not interested in estimating the variances, the relevant posterior is

oo oo
p(flgis s gn) / / p(f,o%,...,ai|gb...,gn)da%--da%
0 0

. <Hp(gi\f,cr?)p(0?)> do? .- -do?
=1

- H/ (gilf, 02) plo?) do? . (38)

effective lik:giihood p(gilf)

K

If we adopt an exponential hyper-prior for the variance

N D/
p(o;) nexp{ 77}, (39)

the resulting effective likelihood is

plal$) = = e {2 o - 11} (10)

Then, the MAP /ML estimate of f is given by Eq. (36), regardless of the
value of the hyper-parameter 7. In conclusion, the LAD criterion can be in-
terpreted as the MMAP /MML criterion resulting from a hierarchical Bayes
formulation where the noise samples are assumed to have unknown indepen-
dent variances with exponential (hyper)priors.

Of course the same line of thought can be followed in regression problems,
where rather than estimating a scalar quantity f, the goal is to fit some
function to observed data. Results along the same lines for other noise
models can be found in [16] and [29].
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The EM algorithm can also be used to do LAD regression by resorting
to the hierarchical interpretation of the Laplacian density. In this case, the
observation model is again linear

g=Hy+u (41)

(where matrix H is known), but now each element of the noise vector u =
[u, ...,n,]T has its own variance, i.e., p(u;|o?) = N(u;|0,0?), where o =
[02, ...,UEL]T, and we have independent exponential hyper-priors for these
variances,

plo) = L Jesp(-%)
= — xp{——}.
LA n

The model is completed with a flat prior for f, i.e., p(f) < “constant”.

To adopt an EM approach, we interpret o as missing data, g is of course
the observed data, and the goal is to estimate y. The complete log-likelihood
from which we could easily estimate y if o was observed is

Hf); — g)?
logp(g, oly) = logp(glo,g) + logp(o) - (D~ g)] )2 ) + K,
N—— 20i

indep. of y

where (Hf); denotes the i-th component of Hf; constant K includes all
terms that do not depend on y. We can now write the E-step as

QyIy®) = —4 (HF — g) ' WO(HT —g) + K (12)

where W = diag(w'”, w", ..., w{") and

1 1 -1 /2
w =B [zly(t)] =L |:2|fi(t):| = [(HE); =g \/i *3)
o; o; n

observe the similarity with Eq. (33). Maximizing Eq. (42) with respect to
y leads to

-1
as [HTW(t)H} HTWg, (44)

which is a weighted least squares (WLS) estimate. Summarizing, the E-
step consists in computing the diagonal matrix W®) whose elements are
given by Eq. (43), and the M-step updates the estimate of y following Eq.
(44). Since each M-step implements a WLS estimate, and the weighting is
updated at each iteration, this EM algorithm can be considered an iteratively
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reweighted least squares (IRLS) procedure [49], with a particular choice of
the reweighting function.

We conclude with a simple illustration. Consider that the goal is to fit
a straight line to the noisy data in Figure 5 (a); this data clearly has eight
outliers. Still in Figure 5 (a) we show the standard least squares regression,
clearly affected by the anomalous data. Figures 5 (b), (c¢), and (d) then
show the results obtained with the EM algorithm just described, after 1, 4,

and 10 iterations. Observe how the outliers are progressively ignored.
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Figure 5: (a) Observed noisy data and standard least squares linear regres-
sion. (b), (c), and (d): LAD estimate via EM after 1, 4, and 10 iterations,
respectively.

As in the previous example, it is possible to extend this approach to
estimate also the hyper-parameter n from the data.

5.4 More on robust estimation: Student ¢ distribution

Student ¢ distributions (univariate or multivariate) are a common replace-
ment for the Gaussian density when robustness (with respect to outliers) is
sought [28]. The robust nature of the ¢ distribution is related to the fact that
it exhibits heavier tails than the Gaussian. However, unlike the Gaussian

20



density, ML (or MAP) estimates of its parameters can not be obtained in
closed form. In this example, we will show how the EM algorithm can be
used to circumvent this difficulty. To keep the notation simple we will focus
on the univariate case.
A variable X is said to have a Student t distribution if its density has
the form
v+1

v x— )2\ 2
1= B 157

where 4 is the mean, o is a scale parameter, and v is called the number of
degrees of freedom. The variance, which is only finite if v > 2, is equal to
o?(v/(v —2)). When v — oo, this density approaches a N(u1,0?). Figure 6
plots a ¢1(0,1), a t4(0,1), and a N'(0, 1) density; observe how the t densities
decay slower than the Gaussian (have heavier tails).

0.6
o5 — ¢t density; degrees of freedom = 1
. . tdensity; degrees of freedom = 4
--- Gaussian

041 -\
03}

02r

Figure 6: Three densities: ¢1(0,1), t4(0,1), and A(0,1). Observe the heavier
tails of the ¢t densities and how the t4(0,1) is closer to the Gaussian than
the £1(0,1).

Now suppose that given a set of n observations x = {z1, ..., 2, }, the goal
is to find the ML estimates of u and ¢ (assuming v is known), for which there
is no closed form solution. The door to the use of the EM algorithm is opened
by the observation that a t-distributed variable can be obtained by a two-
step procedure. Specifically, let Z be a random variable following a N (0, 1)
distribution. Let Y = Y’ /v be another random variable, independent from
Z, where Y’ obeys a chi-square? distribution with v degrees of freedom

2The chi-square distribution is a particular case of a Gamma distribution with o = v /2
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(notice that p(y) = vx?(vy)). Then

X=p+ Ni%
follows a Student-¢ distribution ¢, (u, o).

This decomposition of the Student-t distribution suggests the “creation”
of a missing data set y = {yi,...,yn} such that z; is a sample of X; =
W+ % In fact, if y was observed, each x; would simply be a noisy version
of the constant y contaminated with a zero-mean Gaussian perturbation of
variance o2 /y; (because Z is N'(0,1)). The complete log-likelihood function
is then

n

logp(x,y|u,0%) = Y (logN(xilp,o®/yi) +logv + log X7 (vyi))
i=1
n 9 1 & 9
o —5log(o?) — o > i (xi — p) (45)
=1

where we have dropped all additive terms that do not depend on p or o2.

Notice that Eq. (45) is linear in the missing variables y; accordingly, the
Q-function can be obtained by plugging their conditional expectations into
the complete log-likelihood function, i.e.,

Q (1oi®,59) = B [logp(x,ylu,o?) [x, 7,50
x logp (X,E [y\x, ﬁ(t)ﬁ(t)} M’0'2> )

To obtain the conditional expectations E[y;|z;, i, 5®)], notice that we can
see p(zilyi, g, 02) = N(xi|p,0?/y;) as a likelihood function and p(y;) =
vx2(vy;) as conjugate prior. In fact, as stated in footnote 2 in the previous

page, x5, (y') = Ga(y'|v/2,1/2), and so p(y;) = vx;(vyi) = Galyilv/2,v/2).
The corresponding posterior is then

v v 1 “
I D C_ (1))2

and @ = 1/2. Its probability density function is

—_

-v/2 T
(@) = f T el -3

This density is probably best know by the fact that it characterizes the sum of the squares
of v independent and identically distributed zero-mean unit-variance Gaussian variables.
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whose mean is

v+1

(2= 19
2(500)2

) = Blyla;, i, 5] =

7

v+
Finally, plugging wgt) in the complete log-likelihood function, and maximiz-
ing it with respect to p and o leads to the following update equations:

n (1)
~ i=1 Li W;
u(t—&-l) . Z 1 0 (46)

i

Sy
S+ \/2?21 (@i — ﬁ(t+1))2 wz('t)
n

(47)

To illustrate the use of Student’s ¢ distribution in robust estimation,
consider the data in Figure 7 (a); it consists of 100 noisy observations of the
underlying, supposedly unknown, constant u, which is equal to 1. Most of
the observations were obtained by adding i.i.d. Gaussian noise, of standard
deviation equal to 0.8; however, 10 of them are outliers, i.e. they are ab-
normally large observations which are not well explained by the Gaussian
noise assumption. If we ignore the presence of the outliers and simply com-
pute the mean of the observations (which is the ML estimate of p under
the i.i.d. Gaussian noise assumption) we obtain g = 2.01, clearly affected
by the presence of the outliers; the corresponding estimate of o is 3.0, also
unduly affected by the outliers. If we could remove the outliers and compute
the mean of the remaining observations, the results would be i = 1.06 and
o = 0.85, much closer to the true values. The results of using a ¢ model for
the noise (with v = 2) are also depicted in Figure 7 (b-d). Figure 7 (b) and
(d) show the evolution of the estimates i) and &(*); the final values are
= 1.07 and & = 0.81, very close to the true values. Finally, 7 (c) plots the
final values of w; showing that, at the positions of the outliers, these values
are small, thus down-weighting these observations in the mean and variance
estimates (Eqgs. (47) and (47)).

6 Unsupervised Classification and
Mixture Models

6.1 The EM algorithm for mixtures

Let us now consider a classification problem over K classes, which we label
{1,2,..., K}. Assume that the number of classes K is known. The class-
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Figure 7: (a) Data with outliers. (b) Evolution of the estimate of the mean
produced by the EM algorithm, under a Student ¢ noise model. (c) Final
values w; (see text). (d) Evolution of the estimate of the scale parameter o.

conditional probability functions,
p(g|0s,0p), forse{1,2,.... K},

have unknown parameters which are collected in 8 = {6, 01,...,0K}; O
contains the parameters common to all classes. Let us stress again that
there may exist known parameters, but we simply omit them from the no-
tation. Also, we assume that the functional form of each class-conditional
probability function is known; for example, they can all be Gaussian with dif-
ferent means and covariance matrices, i.e., p(g|0s) = N(g|u,, Cs) in which
case 05, = {pu,, Cs} and Oy does not exist, or Gaussian with different means
but a common covariance matrix, i.e., p(g|0s) = N(g|ps, C) in which case
0, = p, and g = C. If the a priori probabilities of each class are also
considered unknown, they are collected in a vector e = (o, o, ..., g ).

24



In an unsupervised learning scenario, we are given a data set containing
observations G = {gy, ..., gN}Awhose true classes are unknown. The usual
goal is to obtain estimates of @ and & from the data. Since the class of each
observation is unknown, the likelihood function is

K
p(gile, 8) = a.f(gilbs,00), fori=1,2,..,N; (48)
s=1

this type of probability density function (a linear combination of a set of,
usually simpler, probability density functions) is called a finite mizture [37],
[39], [53].

Before proceeding, let us point out that the use of finite mixture models
is not limited to unsupervised learning scenarios [22], [23], [37]. In fact, mix-
tures constitute a flexible and powerful probabilistic modeling tool for uni-
variate and multivariate data. The usefulness of mixture models in any area
which involves statistical data modelling is currently widely acknowledged
[33], [37], [39], [53]. A fundamental fact is that finite mixture models are
able to represent arbitrarily complex probability density functions. This fact
makes them well suited for representing complex likelihood functions (see
[17] and [20]), or priors (see [8] and [10]) for Bayesian inference. Recent theo-
retical results concerning the approximation of arbitrary probability density
functions by finite mixtures can be found in [32].

Let us consider some prior p(a, 0); the MAP estimate (ML, if this prior
is flat) is given by

N K
(a, 0) vap = 8 Ig%{logp(a, 0) + ; log ; asp(gil0s) }

log-likelihood: L(e,0,6)

which does not have a closed form solution (even if the prior is flat). How-
ever, estimating the mixture parameters is clearly a missing data problem
where the class labels of each observation are missing and the EM algorithm
can be adopted. In fact, EM (and some variants of it) is the standard choice
for this task [37], [38], [39]. To derive the EM algorithm for mixtures, it is
convenient to formalized the missing labels as follows: associated to each
observation g;, there is a (missing) label z; that indicates the class of that
observation. Specifically each label is a binary vector z; = [zi(l), e zZ(K)]T
such that zi(s) =1 and zfj ) = 0, for j # s, indicates that g; was generated
by class s. If the missing data Z = {z1,...,zy} was observed together with

25



the actually observed G, we could write the complete loglikelihood function

N N K
Lo(e,0.G. 2) = log [ | plgi ziloe.0) = YN 2 log (up(gil.)) . (49)

i=1 i=1 s=1

Maximization of L.(a, 8,3, Z) with respect to e and 0 is simple and leads
to the following ML estimates:

N
_ 1 (s)
Qs = NZ;ZZ ’ for s = 1727”'7K7 (50)

N
0, = argrréaxz,zgs) logp(gil@s), fors=12 ., K. (51)
s =1
That is, the presence of the missing data would turn the problem into a su-
pervised learning one, where the parameters of each class-conditional density
are estimated separately. It is of course easy to extend this conclusion to
cases where we have non-flat priors p(a, 9).

Recall that the fundamental step of the EM algorithm consists in com-
puting the conditional expectation of the complete loglikelihood function,
given the observed data and the current parameter estimate (the E-step, Eq.
(2)). Notice that the complete loglikelihood function in Eq. (49) is linear in
the missing observations; this allows writing

Qe 03".0") = B[Lu(e.0.6.2)i6,60.0"
= Lc(a,0,6,8(2/6,a",8")

because expectations commute with linear functions. In other words, the
E-step reduces to the computation of the expected value of the missing data,
which is then plugged into the complete log-likelihood function. Since the
elements of Z are all binary variables, we have

(®) ()

Wl = Bl2{|g,a",8") = P2l = 1g,a",8"]

which is the probability that g; was generated by class s, given the obser-
vations G and the current parameter estimates. This probability can easily
be obtained from Bayes law,

,\ ~ (¢
) _ a2 p(gil6:.")

wl(‘g) = Pr[zi(s) = 1|g,a(t),§ ==

— —~(t)

Zar(t)p(gi‘er )
r=1

; (52)
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s —~(t . ..
because wg ) and 045( ) can be seen, respectively, as the a posteriori and a

priori probabilities that g; belongs to class s (given the current parameter
estimates). The M-step then consists in solving Egs. (50) and (51) with
() ()

w;”’ replacing z;

6.2 Particular case: Gaussian mixtures

Gaussian mixtures, i.e., those in which each component is Gaussian, p(g|0s) =
N (g|p,, Cs), are by far the most common type. From an unsupervised clas-
sification perspective, this corresponds to assuming Gaussian class-conditional
densities. For simplicity, let us assume that there are no constraints on
the unknown parameters of each component (mean and covariance matrix)
and that the prior is flat, i.e., we will be looking for ML estimates of the
mixture parameters. In this case, the parameters to be estimated are «
and 0 = {01,...,0k}, where 65 = {pu,, Cs} (the mean and covariance of
component s). The E-step (Eq. (52)), in the particular case of Gaussian
components becomes

(s) N (g, c,"

w; = % )
S &N (gl C,
r=1

N
)

(2

Concerning the M-step, for the Gaussian case we have

1 N
= Nzw§8)7 (53)
=1

N
Z g@-wgs)
i=1

—~(t+1)

M N (54)
>
i=1
N
> — ) (g — ) Tl
é\s(t+1) | , (55)

N ()
g wis
i=1

all for s = 1,2,..., K. Notice that the update equations for the mean vec-
tors and the covariance matrices are weighted versions of the standard ML
estimates (sample mean and sample covariance).
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We will now illustrate the application of the EM algorithm in learning a
mixture of four bivariate equiprobable Gaussian classes. The parameters of
the class-conditional Gaussian densities are as follows:

=[] e[ ] we[5] me 2]

1] el

and

0 1 0 0.1
1 -03 1 03
Cs = [ ~-0.3 0.2 } Cs= [ 0.3 0.2 ] '

Figure 8 shows 1000 samples (approximately 250 per class) of this densities
and the evolution of the component estimates obtained by the EM algorithm
(the ellipses represent level curves of each Gaussian density). We also show
the initial condition from which EM was started.

The estimates of the parameters obtained were

a1 =0.2453 a3 =0.2537 a3z = 0.2511 ay = 0.2499,

(recall that the classes are equiprobable, thus the true values are a; = ag =
a3 = g = 0.25),

_ 0.036 _— 0.091 _ 3.017 _ —-2.971
M1 = Mo = H3 = Ky = )

0.057 —3.022 2.475 2.543
and
~ 0.448 0 P 1.318 0
C1= [ 0 0.930 ] Co = [ 0 0.098 ]
G._ [ 0968 02785 o _[1.049 0.302
371 —0.2785  0.209 4710302 0.197 |-

One of the main features of EM is its greedy (local) nature which makes
proper initialization an important issue. This is specially true with mixture
models, whose likelihood function has many local maxima. Local maxima of
the likelihood arise when there are too many components in one region of the
space, and too few in another, because EM is unable to move components
from one region to the other, crossing low likelihood regions. This fact is
illustrated in Figures 9 and 10, where we show an example of a successful
and an unsuccessful initialization.
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Initialization . .
9 iterations
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38 iterations
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Figure 8: The EM algorithm applied to 1000 (unclassified) samples of the
four Gaussian classes described in the text. Convergence is declared when
the relative increase in the objective function (the likelihood in this case) falls
below a threshold; with the threshold set to 10~ convergence happened after
38 iterations. The ellipses represent level curves of each Gaussian density.

It should be pointed out that looking for the ML estimate of the pa-
rameters of a Gaussian mixture is a peculiar type of optimization problem.
On one hand, we have a multi-modal likelihood function with several poor
local maxima which make pure local/greedy methods (like EM) dependent
on initialization. But on the other hand, we do not want a global maximum,
because the likelihood function is unbounded. As a simple example of the
unbounded nature of the likelihood function, consider n real observations
x1, ...y to which a two-component univariate Gaussian mixture is to be
fitted. The logarithm of the likelihood function is

_(=i—m) _(=i—p2)

ilog ae (1—a)e 272

+
1 \/2mod \/2mos

With pp = x1, the first term can be made arbitrarily large by letting a%
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5 Initialization . After 15 iterations

Figure 9: Example of a successful run of EM.

Initialization After 240 iterations

Figure 10: Example of a unsuccessful run of EM due to poor initialization.

approach zero, while the other terms of the sum remain bounded. In conclu-
sion, what is sought for is a “good” local maximum, not a global maximum.
For several references on the EM initialization problem for finite mixtures,
and a particular approach, see [14], [39].
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