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1 EM and Mode Hunting

EM (Expectation-Maximisation) algorithms for mode-hunting: marginal posterior modes in a Bayesian
model analysis, MLEs in problems of missing data or latent variables.

1.1 Relevant Theory: Entropy and Kiillback-Leibler Divergence

e Two density functions f(x) and g(x) with common support
e 1 is general - discrete, real, multivariate, etc

e Entropy: Hy = — [log(f(x))f(x)dx

- Hy = E(-log(f()))
— more generally, formally: — [log(f(x))dF (z) with distribution F’

KL divergence of ¢ from f:
Ky = [ log(#(x)/ o)) x)de

Kgy = E(—log(g(x))) — Hy where the expectation is with respect to f(z)
Key property: K,y > 0 with equality if and only if f(x) = g(z) everywhere

— Proof: (Lange, 10.4).
Simply an application of Jensen’s inequality, based on strict convexity of —log(w) for w > 0.
The expected value of a convex function exceeds the function value at the expectation: E(q(w)) >
q(E(w)) for any convex function of a random variable w. So, with w = g(x)/f(x) and
q(w) = —log(w) and taking the expectation with respect to f(x),

Kgy = E(-log(g(z)/f(x))) = —log(E(g(z)/f(x))) = 0.

e One result: — [log(g(x))f(x)dx > Hy



1.2 EM for Marginal Mode Hunting

EM traditionally derived for MLE evaluation in missing data problems. This is a special case of a Bayesian
marginal posterior mode computation, and the general Bayesian setting is easier to understand and derive
(see also Gelman et al, chapter 12).

e Statistical model defines a posterior p(6, 7|y) for parameters or latent variables 6, T of arbitrary nature
and dimension, and observed data of any kind y

e Goal: Compute marginal posterior mode(s) for # : 6 value that maximises log(p(f|y)) (always nu-
merically safer to work on log scale)

e Problem: Must marginalise over 7 - problems of complexity such that the integration is hard.

1.3 Starting Point for EM Mode Hunting:

For any value of 7,

log(p(fly)) = log(p(0,7|y)) — log(p(7]0,y))

)

e Take expectation with respect to p(7]0", y) for any specified value #" (imagine this is an initial “guess’
at the marginal posterior mode for )

log(p(0]y)) = /log(p(eﬁ\y))p(ﬂ@o,y)df - /log(p(TIG,y))p(TIGO,y)dT
= Q(0]6°) + R(6]6°)

(both depend on y but notation drops that for clarity)

e Second term:
— Match f(z) < p(7]6°,y) and g(z) < p(7|0,y). Then
R(016%) = — [ 1og(p(r16” )p(r|6", y)dr
with equality if and only if § = 6°. So R(0|0°) is minimized at 6 = 6°
e Consider any value § = #' such that

Q(6'16°) > Q(6°]6°).
Then:

log(p(0']y)) = Q(616°) + R(6'(6°) > Q(6°16°) + R(6°]6°) = log(p(6°|y))
- Generalised EM (GEM): any 6" such that
Q(6'16°) > Q(6°]6°)

increases the marginal posterior density
— EM: Find 0 = 0! to maximise Q(0)0°)

x “E”-step: Take the expectation to define ()
* “M”-step: Maximise ()



e Algorithm:

— Start anywhere: 6 with i = 0.

— Tterate: #*+! increases (GEM) or maximises (EM) the (objective) function Q(0|6%) over 6.

— Above theory shows that this surely moves to higher marginal posterior density values, and so
converges to a posterior mode

— Local modes - will not escape. Multiple restarts generally needed. Can be very slow.

— Problems in which computing () is very hard are not good candidates for EM.

— Often very easy to implement and compute in “standard” statistical model classes, ar least gen-
erating information as a starting point for further analysis.

— Note that the iterations will also generate information about 7, often in terms of posterior ex-
pected values of elements of 7 directly, conditional on the iterated values of 6. For example,
E(7]6",y) at the (approximate) posterior mode of 6.

e One simple, venerable example is random sampling from a T distribution under a standard reference
prior: (z;|0) ~ Ti(p, 0?) independently, with = (u, o) with p(#) oc o~2. Here 7 stands for the
set of m implicit random scales that mix normal distributions to generate the 7. That is, the model is
equivalent to (z;]0,7) ~ N(u,0?/7;) where 7; ~ Ga(k/2, k/2) independently.

o Another key practical example is multiple shrinkage prior modelling in regression.

Regression setup: data n—vector z = Hf3 + v where H is fixed n X p design matrix, (3 is p—vector
of regression parameters, and v ~ N (0, 1) for some precision ¢. Hierarchical/multiple shrinkage
prior 3|7 ~ N(0,T") where T' = diag(r1, ..., 7p) and 7 is just the set of these values. Often use (con-
ditionally conjugate) inverse gamma priors over these shrinkage parameters: Ti_l U Ga(a/2,b/2)
for specified (a,b). Interest focuses on 3 and the EM can be applied easily and usefully to com-
pute posterior modes for § = (3, ¢) in this setting. Evaluate under the traditional reference prior
p() o o~

e A second standard and useful example is the traditional normal hierarchical model (random effects)
for 1-way Anova data, as developed in Gelman et al (section 12.5).



1.4 Missing Data & Traditional View of EM

Contexts in which 7 represents missing data or latent variables: Usual alternative notation is 7 = z and the
full or complete data is x = (y, z). Problems are often those in which the model and inference is tractable if
z were in fact also observed.

e Recall the key definition:

QUO10°) = [ 10g(p(6. Tly)p(rI6". y)dr

e Use the identity
p(0,7ly) = p(y, 710)p(6)/p(y)

inside the integral defining the @) function to get

Q(O16") = [ log(ply, 716))p(r16%, )dr + log(p(9)) ~ log(p(y)

Denote the integral here by

QVHE(616%) = [ 1og(ply, 716))p(r]6°, )dr

so that
QMLE(916°) = Q(]6°) — log(p(h)) + constant

e Maximising Q(6]0°) — log(p(6)) generates the EM for (local) MLEs.

e In cases of p(f) o constant, the marginal posterior is just p(f|y) o p(y|@) so that posterior modes
are exactly (local or global) MLEs. In such cases, maximising @ is the same as maximising Q™ ¥
since log(p(0)) is constant.

o QMLE(]0Y) is the traditional (G)EM criterion function in missing data problems, when 7 = z is
missing data rather than “parameters”. Technically the same thing of course. Using the z notation,

QYEE(018°) = [ log(p(y, 210))p(<16° y)dz

- the expected value of the log of the complete data density (given ) from the statistical model, with
expectation with respect to the current “best guess” of the distribution of the missing data having seen
the observed data.

¢ In many applications where this is feasible, the data are conditionally independent under the assumed
model, so that p(z|6,y) = p(z|6), not dependent on y. EM works well in many such problems; it can
be very hard to derive and implement in problems where the dependence on y of this distribution is
intricate.

e MCMC usually applies much more easily in many such problems.



