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SUMMARY

We discuss Bayesian analyses of traditional normal mixture mod-
els for classification and discrimination. The development involves
application of an iterative resampling approach to Monte Carlo in-
ference, commonly called Gibbs sampling, and demonstrates rou-
tine application. We stress the benefits of exact analyses over tra-
ditional classification and discrimination techniques, including the
ease with which such analyses may be peformed in a quite general
setting, with possibly several normal mixture components having
different covariance matrices, the computation of exact posterior
classification probabilities for observed data and for future cases to
be classified, and posterior distributions for these probabilities that

allow for assessment of second-level uncertainties in classification.
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1. INTRODUCTION

Binder (1978) describes a general class of normal mixture models, and
discusses some ingredients of Bayesian approaches to classification, cluster-
ing and discrimination using such models. Hartigan (1975, Chapter 5), Mc-
Clachlan and Basford (1988), and Titterington, Smith and Makov (1985)
discuss approaches to inference, Bayesian and non-Bayesian, in similar mod-
els. These analyses, and most others to date, depend on various forms of
analytic or numerical approximation to inferences due to the mathemati-
cal difficulties induced by the complexity of likelihood functions for model
parameters. Recent developments in Monte Carlo analysis using iterative
resampling schemes, as in Gelfand and Smith (1990), for example, now pro-
vide for the relevant calculations to be performed. This is demonstrated and

illustrated here.

2. NORMAL MIXTURE MODELS
Suppose data y;, (j = 1,2,...,;y; € R?) are modelled as exchangeably
distributed according to a discrete mixture of a known number £k of multi-

variate normal components. Specifically, (y;|7) ~ N (u;; 2;) with probability

0;, for each i = 1,...,k, for some mean vectors p = (u;;i = 1,...,k), vari-
ance matrices ¥ = (X;;i = 1,...,k), and classification probabilities in the
k—vector 0 = (01, ...,0k); here m represents all parameters m = (u, 3, 0). In-

troduce classification variables z;, where z; = 4 implies that y; is drawn from
component ¢ of the mixture, or classified into group . Thus knowledge of z;
revises p(y;|m) to the single normal component (y;|z; = i,m) ~ N (pi;%;).
Additionally, (z;|¢) are conditionally independent with P(z; = i|f) = 6,.
We are concerned with problems of inference about the model parameters 7,
the classification quantities z;, and the classification of future cases. Infer-
ences will be based on observing a sample of the y; with, typically, only a
fraction of the corresponding classification quantities z; observed. Here we

specify a class of prior distributions and detail some structure of the resulting
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posteriors.

We generalise Binder (1978, Section 3.3) in defining a conditionally
conjugate prior for m. We assume (u;,Y;) to be mutually independent
over groups ¢ = 1,...,k, with normal-inverse Wishart priors. The nota-
tion and structure for such priors follows West and Harrison (1989, Section
15.4.3) and is briefly detailed in an appendix here. We assume (p;|3;) ~
/\/'(mi70; Yi/hip), for some means m; o and precision parameters h; o > 0,
and take the margin for 3J; as the inverse Wishart distribution with v; o >0
degrees of freedom and scale matrix V; o, denoted by X; ~ W_l(vi,o, Vio),
as in appendix. Finally, we assume 6 to be independent of (u,Y), with a
Dirichlet prior, § ~ D(ag) where ag = (a1,0,...,ak,0); the prior mean vector
is E(0) = ao/Ao, where Ag = aq,0+ ...+ ako.

Conder now a set of observations y = (y;;j = 1,...,n) for some integer
n, writing z = (2;;j = 1,...,n). Under the specified model, the joint distri-

bution of (y, z, 7) has the following component conditional distributions.

(1) p(p, Xy, z,0).
Fixing z implies the data are classified as k independent normal samples,
and the analysis is standard, as in De Groot (1970, Section 9.10). Prior
independence leads to posterior independence of the (u;, ;) over groups i,
with normal-inverse Wishart posteriors defined as follows. Let G; = {j|z; =
i}, the index set for observations in group i, and g; = #G;, so that n =
g1 + ...+ gx. For each group, the sufficient statistics are the mean vectors
Ui = 0; 1 > yj, and the matrices of sums of squares and cross-products S; =
> (y; — ¥i)(y; — ¥i)', where each sum is over j € G;. Then p(u;, X;ly, z,0) =
p(pi, Xily, z) has components (y1;[%i,y,2) ~ N(mi;X;/h;) and (E4]y, 2) ~
WL (v;, V;) with by = hi o + gi, mi = (hiomio + gi¥i)/hi, vi = vip + g; and
Vi=Vio+Si+ (5 — mi)(yi —mi) gihio/hi.

We note a minor modification of these results to apply when the ref-

erence prior p(u;, ¥;) oc |X;|~®+1/2 is used in place of the normal-inverse
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Wishart priors above. Then, assuming g; > p+1, the posteriors p(u;, X;|y, 2)

are as above, but now with h; = g;, m; = 9;, v;i = ¢g; —p and V; = S;.

(2) p(0ly, z, 1, %2).
Given z, 0 is conditionally independent of (y, i, ), and has the Dirichlet
posterior (f|z) ~ D(a), where a = (a1,...,a;) with a; = a;0 + g¢i; the

posterior means are E(60;|z) = a;/A where A =a1 + ...+ ag.

(3) p(zly,m).
Given y and m = (p, X,0), the z; are conditionally independent. For each
j=1,...,n,

P(z; =iy, m) o< 0ip(y;|pi, i, zj = 1), (it=1,...,k),
and summing to unity over i = 1,..., k. Here p(y;|pi, X, z; = ©) is just the

normal density function for group ¢, with mean vector y; and variance matrix

3;, evaluated at the point y;.

(4) As a corollary to (1) and (2), we may easily obtain the marginal posteriors
for (uily,z) and the predictive distributions for new cases drawn from any
specified group. Using results and notation from the appendix, the margin
for p; is (pily, z) ~ To,(mi; Vi/(hsv;)), with density given in equation (Al)
of the appendix. In predicting a future observation drawn from group i, say
(ygpi, i, zp = i) ~ N(pi;2;), the predictive distribution is (yfly, z, zf =
i) ~ Ty, (mi; Q;), where z; is the classification indicator for y; and Q; =
Vi(14 h;)/(h;v;); the density function is given in equation (A2) of appendix.
If zf is unknown, the unconditional predictive distribution is just the mixture

p(yrly, 2) =Y p(yrly, 2, 25 = i)a; /A.

A general framework supposes that we may observe a training sample of
some t perfectly classified cases, and a further u unclassified cases. Thus we

assume we are to observe data y(ry = (y1, ..., ¥:) together with classification
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indicators z(ry = (z1,...,2t), and then yr) = (Y41, - -, Yt4u), and we will
process these two datasets sequentially, (y(r), z(ry) followed by y ). We will
then proceed to inference about the model parameters 7 and the classification
quantities 2y = (zj;7 = t+1,...,t+u) and also to predictive classification
of future cases.

Consider first processing the training sample. The prior is conjugate and
the analysis is standard, since the data are perfectly classified into normal
components, the quantities z(yy = (21,...,2) being known. The compo-
nents of analysis are just as described under (1) and (2) above, with n = ¢
classified observations. Following the analysis, we are left with independent
normal-inverse Wishart posteriors p(u;, X;|y(r), #(r)), and the Dirichlet pos-
terior p(0|z(ry). The structure of the joint posterior for m = (u, X, 0) given
(y(7y, #(1)) 1s just that of the prior, with the defining parameters appropri-
ately updated.

Consider now the unclassified sample y ). We know that (ywy, zw))
is conditionally independent of (y(ry,%(r)) given the parameters 7, and so
points (1) — (3) above apply to determine various components of the poste-
rior p(p, 3,0, 2w |y(ry, Z(r)> Yy)- This involves simply replacing the prior
for m throughout by the similarly structured distribution p(=|y(r), (7)), just
obtained, that summarises the revised state of information about the param-
eters based on the training sample. Now marginal posteriors for (i, ), for
example, are difficult to compute since z(gy is uncertain. It is at this point
that Monte Carlo analysis using iterative resampling from the conditional

posteriors defined under points (1) — (3) is useful.

3. SAMPLING THE POSTERIOR
We now identify the posterior p(m|y(ry, (1)) as the prior in points (1)
~ (2) above, the unclassified sample (y(vy, z(v)) as the data (y, z) to be pro-
cessed, with the sample size u replacing n. For notational convenience, write

D as the known data information D = (y(ry, 2(1), ¥(rr)). Note that the fol-
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lowing sampling exercise is computationally straightforward.

(a) Given z(y), we may draw a sample from the posterior p(u, X|D, z)) =
[Ip(pi, Xi| D, z1ry), the product over i = 1,..., k independent normal-
inverse Wishart components defined as in (1). Convenient and efficient
algorithms for simulating inverse Wishart distributions are given in An-
derson (1984, p247 and pp254-255).

(b) Also given z(, it is trivial to sample ¢ from the conditional Dirichlet
posterior p(0|D, z)) defined as in (2).

(¢) Given m = (p, X, 0), it is similarly trivial to sample from the posterior
p(2@)|D, ) defined as in (3).

Based on these observations, an iterative resampling technique, as in Gelfand

and Smith (1990), for example, provides for an approximate draw from the

joint posterior p(m, z(rr)| D) to be obtained as follows. Start with an assigned

value for the initial classification vector z;. Proceed through (a) and (b)

to sample 7 from the conditional posterior based on this value of z. At

(c), use this sampled value of m to determine p(z|D,7) and sample from

this distribution to get a new value for 2. Return to (a) and repeat,

iterating through this cycle repeatedly to update the values of m and z().

With sufficient iteration, this process leads to ‘final’ values (m,z) that

form an approximate draw from the joint posterior p(, z(r)|D). Replicating

the process provides for an approximate random sample to be drawn from
the posterior, forming the basis of a Monte Carlo analysis.

A suitable starting value for the vector z(r) is given by initially classify-
ing the data y() into groups ¢ = 1,..., k according to their individual pre-
posterior classification probabilities P(z; = ily(ry, 2(1), y;), for each j =1t +
1,...,t 4+ u. These are easily computed via P(z; = i|y(r), 2(1),yj) X P(z; =
ilyry, 2(r))P(Yi YTy, 201y, 25 = 1). The first term here is just E(0;|y(ry, 2(1)),
the it" element of the mean vector of the Dirichlet posterior p(Olycry, 2(1y),

from point (2) above. The second term is just the value at y; of the density of
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the multivariate T distribution for predicting new cases in group i, given un-
der point (4) above. A referee suggests an alternative for determining starting
values: select 2,11 as before and, for j =¢+2,...,t4u select z; based on the
probabilities P(z; = i|y(ry, 2(T), Ye+1, -+ - Yj—15 Zt41,- - -, Zj—1,Y;). We don’t
know which alternative is better.

Suppose this procedure is followed to produce a sample of size N from
the posterior, denoted by (7 (r), zw)(r);r =1,...,N), say. Monte Carlo in-
ference about the elements of m and z(;7) may be based directly on the sam-
pled values, or more efficiently on refined approximations to the marginal
posteriors determined as follows. Simply recall that, were z(;y) known, infer-
ence about elements of 7 would be based on standard normal theory. Also,
were 7 known, then inference about zy would be simple too, based on
the conditional probabilities P(z; = i|y, ) defined in item (3) of Section 2.
Then the Monte Carlo approximations to p(m|D) and p(z|D) are simply

the mixtures

p(r|D) = N™"Y " p(n|D, 2 (1)),
r;l (1)
p(zw)|D) = N1 " p(z D, (r)).

r=1

(i) The first equation in (1) has a margin for p;, (i = 1,..., k), that is a mix-
ture of conditional T posteriors, easily evaluated and summarised. Sim-
ilarly, inference about 3; will be based on a mixture of inverse Wisharts.

(ii) Of particular interest in discrimination and classification are the poste-
rior probabilities P(z; = ¢|D), for each ¢ =t +1,...,¢ + u. The second
equation in (1) directly gives Monte Carlo estimates of these quantities.

(iii) Consider prediction of further observations. Suppose that such an ob-
servation ys is known to come from component ¢ of the mixture; thus, if

z5 is the classification indicator for yr, we require the density function

p(yf|D, z¢ = i). Now (1) applies to give a mixture of T distributions,
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each component p(y¢|D, zy = 4, 2 (r)) identified as described in point
(4) of Section 2.

(iv) If zg is unknown, the density p(y¢|D) ~ N=' > p(yf|D, 2 (r)) forms
the basis for prediction of yr. The mixture components here are easily
given by

k
p(ysID, z@y) =D Plzy = ilD, 2w))p(ys D, 21y 25 = );
i=1
the probability forming the first term of the summand here is evaluated
as P(zy = i|D, zw)) = E(9;|D, zr)), and the second term is just the
density in (iii).
(v) In attempting to classify y; when z¢ is unknown, we are interested in

the posterior probabilities
P(zy =i|D,yy) o< P(z5 =i|D)p(ys|D, z¢ = 1i). (2)

The first term here is simply approximated, using (1), as P(z; = |D) =

E(0;|D) =~ N~'3 E(6;|D,zq(r)), the sum over r = 1,...,N, of

course. The second term is evaluated as in (iii).
In connection with classification and discrimination in points (ii) and (v),
note that the classification probabilites are dependent and that the sampling
based calculations allow for assessment of the dependence. Neighbouring
points will, with high probability, belong to the same group. To focus dis-
cussion, consider the simple example of one dimensional data coming from
a mixture of just two normal distributions with known variances of unity.
Suppose also that, based on training data, the posteriors for group means
are p; ~ N((=1)%2;1), and the posterior Dirichlet for # has a = (25,25),
with E(6;) = 0.5 for i = 1, 2. Suppose two unclassified cases are observed at
zero. Easy calculations show that P(z; = i|D) = 0.5 for each i. However,

it can also be shown that P(z; = 23|D) = 0.7. This feature will arise, quite
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generally, in considering an observation or a y¢ that has neighbouring points
that are uncertainly classified, and particularly when those points are influ-
ential in updating the posterior distributions of moments of any component

normal with which they are identified in conditioning.

4. ILLUSTRATION
[Mlustration is based on a two dimensional, three component version of
a waveform recognition problem developed in Breiman, Friedman, Olshen
and Stone (1984, Section 2.6.2). Bivariate observations are generated from
a k = 3, equally weighted component mixture of non-normal distributions,

as follows. Define matrices

o 1 0 1 o 0
01—<3 5), CQ—<1 5), and Cl—<3 1).

An observation from component 7 of the mixture is generated according to

(v wi )
Ui <yjz> 1<1—w1> <€jz>’

where w; is uniform over the unit interval, and the ¢;, are independent
N(0;1/2) quantities. The w; and €j, are also independent over observations
J.

An initial training sample of size ¢ = 15 drawn from this model appears
in Figure 1(a); there are just 3 cases from component 1, 5 from component
two, and 7 from component 3. This forms the basis of initial analysis using
independent reference priors for the group moments (p;, 3;), and a reference
prior for # with Dirichlet parameter ag = (0,0,0). Predictive distributions
based on the training data appear in Figure 2. In these graphs, and in
Figure 4, density contours plotted determine approximate 25, 50 and 75%
regions. Figure 2 displays these contours for each of the three bivariate
T densities, p(ys|y(r), 2(ry, 2y = @), and also the unconditional predictive

density p(yr|y(ry, 2(1)), just the mixture of the three T densities as noted
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in point (4) of Section 2. The paucity of training data from component 1,
in particular, leads to a rather diffuse distribution for that component, with
vi = g1 —p = 3 — 2 =1 degree of freedom; this is reflected in the mixture
which has a mode corresponding to each component 2 and 3, but not 1. It is
also straightforward to compute the posterior classification probabilities for

a future case yy,

P(zp = ilycry, 2y, y5) o EOilyery, 20)pWs lyery, 2y, 25 = 9,

(1=1,2,3).
Figure 3(a) displays a discrimination function based on these probabilities.
In the dark region P(zy = 3|y(r), 2(1),ys) is the largest of the three prob-
abilities; the shaded and white regions correspond to components 2 and 1
respectively. Figures 3(b), 3(c) and 3(d) displays contours of the classification
probabilities. In Figure 3(b), for example, the four regions from dark to white
are where P(zy = 1|ly(ry, (1), ys) > .9, .5 < P(zy = Ly, (1), y5) < .9,
05 < P(zy = Llyry, 201y, yp) < .5, and P(zy = 1lycry, 2(1), y5) < .05, re-
spectively. The probability on component ¢ naturally decreases as we move
away from the region of the mode of p(y¢|y(r), 2(1), 2y = i). One point of
interest, however, which is quite general, is that this probability again in-
creases eventually in some directions. For example, P(zy = 1|y, 2(7), ¥r)
decreases as yy moves away from the mode near (2,4)’, but eventually in-
creases again as yy moves either North-West or South-East. Generally, once
we are removed from the central region where the component densities vary,
as displayed, the component T density that is most diffuse in any direction
will eventually dominate.

So far the computations are standard, analytically derived. Now con-
sider further, unclassified data. Figure 1(b) displays a further set yr) of
v = 300 unclassified cases. The iterative resampling analysis of Section 3
is performed to give inferences partially summarised in Figures 4 and 5.

The Monte Carlo analysis has sample size N = 500, each sampling exer-
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cise based on 50 resampling iterations. Figure 4 provides predictive densi-
ties p(ys|D, 2wy, 25 = ), (i = 1,2,3), and p(ys|D, ) as described under
points (iii) and (iv) of Section 3, neatly summarising the data analysis in
predictive terms. Posterior classification probabilities for future cases may
be evaluated as in point (v) of Section 3, and again plotted as functions of
y¢; the discriminant function and contours of these probabilities appear in
Figure 5. The superiority of such plots over the usual linear or quadratic
discrimination rules are clear. However, if desired, analogues of such rules
may be deduced if a classification loss function is imposed, since Monte Carlo
approximations to the posterior expectations required to evaluate expected
losses may be easily computed. Further inferences may be easily derived
from the results of this analysis. Posterior inference for the parameters of
the component normals are commonly of interest, and the ingredients for
such additional computations are available, though are not pursued further
here.

The computations were performed using C and Fortran routines running
on DECstations under Ultrix 4.0. On a DECstation 2100, the resampling
computations reported in this example were timed as follows. For the com-
plete 500 samples and with 50 iterations each, the complete analysis of 300
unclassified cases to produce all the required outputs was timed at around
75 minutes cpu time. This code was not optimised in any way. The time will
increase roughly in proportion to numbers of unclassified cases. Of course,
additional effort is needed to deduce contour plots of predictive densities and

classification probabilities, and for further posterior analysis.
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APPENDIX

The notation and density functions for the normal-inverse Wishart dis-
tribution are as follows. For any p—vector p and p X p variance matrix >
we have (u|X) ~ N(m;X/h) for some precision parameter h > 0. Also,
Y ~ Wl(v,V), the inverse Wishart distribution with density function
p(2) = c(p, v)|V|PTv=1/2|5|=(P+v/2exp((—0.5)trace(X V), for some con-
stant ¢(p,v). Here v > 0 is the degrees of freedom and V' is a variance matrix
such that F(X) = V/(v —2), for v > 2. The marginal multivariate T distri-
bution for y has v degrees of freedom, and scale matrix M = V/(hv), with

density function
p(p) = Cp, o) [ M| 72 {1 + (= m)' M~ (p — m) o}~ PF/2 (A1)

where C(p,v) = T'((p+v)/2)(vr)"P/2/T'(v/2). By way of notation, we write
p~ Ty(m; M), the dimension p being implicit.

If (ylp,X) ~ N(p;X), then the predictive distribution for y is a similar
T distribution but with increased spread, namely Y ~ T,(m; Q) with Q =
V(1 + h)/(hv). The density function is simply

p(y) = C(p,)|QI {1+ (y — m)' Q™ (y — m) v}~ P+I/2. (42)
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TITLES AND LEGENDS FOR FIGURES

Figure 1.

Data yr = (y1,y2): (a) 15 classified cases marked as 1,2, and 3 accord-
ing to group, and (b) 300 unclassified cases.

Figure 2.
Contours of densities p(yy|yr), 2r)) and p(yrlycry, z(ry, 25 = i) for
components 7 = 1,2 and 3. The contours represent 25%, 50% and 75%

probability regions, the latter being the outermost contour in each case.

Figure 3.

(a): Modal probabilities. The black, grey, and white regions are where
components 3, 2, and 1 are favoured, respectively.

(b), (¢), (d): Contours of P(zy = ilycry, #(r),ys), for components
¢t = 1,2 and 3. The black, dark grey, light grey and white regions are
where P(zy = ilyry, (1), y5) > 0.90, 0.50 < P(z5 = ily(ry, 2(1), ¥f) <

0.90, 0.056 < P(Zf = i|y(T)aZ(T)ayf) < 0.50, and 0.05 > P(Zf =
i|y(T), 2(T), Y5 ), Tespectively.

Figure 4.

Contours of densities p(ys|D, z(tr)) and p(y¢|D, 2, 25 = i) for com-
ponents ¢ = 1,2 and 3. The contours represent 25%, 50% and 75%
probability regions, the latter being the outermost contour in each

case.
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Figure 5.

(a): Modal probabilities. The black, grey, and white regions are where
components 3, 2, and 1 are favoured, respectively.

(b), (c), (d): Contours of P(zy = i|lycr), 21, Yw),Ys), for compo-
nents ¢ = 1,2 and 3. The black, dark grey, light grey and white re-
gions are where P(zy = i|yr), 2(1), Yy, ¥s) > 0.90, 0.50 < P(zy =
i|\yry, 2y, Yy, ¥yg) < 0.90, 0.05 < P(zp = ilyery, 21, Yy, ¥f) <
0.50, and 0.05 > P(zy = i|y(r), 2(1), Y(v), Y ), respectively.
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Case t=15: 25%, 50% and 75% predictive contours
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Case t=15: Classification summary
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Case t=15 & u=300: 25%, 50% and 75% predictive contours
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Case t=15 & u=300: Classification summary

(a) Modal Component

(b) Component 1
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