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Hierarchical Mixture Models in Neurological

Mike WEST

Transmission Analysis

Hierarchically structured mixture models are studied in the context of data analysis and inference on neural synaptic transmission
characteristics in mammalian, and other, central nervous systems. Mixture structures arise due to uncertainties about the stochastic
mechanisms governing the responses to electrochemical stimulation of individual neurotransmitter release sites at nerve junctions.
Models attempt to capture such scientific features as the sensitivity of individual synaptic transmission sites to electrochemical
stimuli and the extent of their electrochemical responses when stimulated. This is done via suitably structured classes of prior
distributions for parameters describing these features. Such priors may be structured to permit assessment of currently topical
scientific hypotheses about fundamental neural function. Posterior analysis is implemented via stochastic simulation. Several data
analyses are described to illustrate the approach, with resulting neurophysiological insights in some recently generated experimental
contexts. Further developments and open questions, both neurophysiological and statistical, are noted.

KEY WORDS: Bayesian computation; Deconvolution; Mixture model; Neural response activity; Parameter identification in

mixtures; Quantal synaptic transmission.

1. SCIENTIFIC CONTEXT AND BACKGROUND

The last 15 years or so has seen the development of a
major field of study concerning the stochastic character-
istics of electrochemical transmission between nerves at
synaptic junctions in mammalian and other central nervous
systems (Walmsley, Edwards, and Tracy 1987). Fundamen-
tal debates in the discipline concern the scope of validity
of specific hypotheses about synaptic communication, with
variants of a basic, ‘quantal’ hypothesis being of central in-
terest (Clements 1991; Martin 1966; Walmsley et al. 1988).
Much recent experimental and ensuing statistical analysis
has been concerned with examining the evidence for or
against this simple hypothesis in differing synaptic junc-
tions and under differing environmental conditions (Kull-
man and Nicoll 1992; Redman 1990; Turner 1987; Turner
and Wheal 1991). The relevant statistical issues have been
addressed in derived models based on discrete mixture dis-
tributions for recorded neural signals, under ranges of par-
tial constraints that impose characteristics either in confor-
mity with quantal hypotheses or allowing specific kinds of
departures from such hypotheses (Ling and Tolhurst 1983;
Wong and Redman 1980). Our previous statistical work in
the area has complemented existing approaches to mixture
estimation, such as based on EM computations (Kullman
1989) and entropy formulations (Kullman 1992), by intro-
ducing general classes of Bayesian mixture models and their
associated analyses (Escobar and West 1995; Turner and
West 1993; West and Cao 1993; West and Turner 1994).
It is characteristic of these approaches that they adopt a
neutral scientific standpoint on the issue of mixture model
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composition. Like previous, non-Bayesian approaches, the
framework has been directed at modeling experimental data
using general and flexible classes of mixture models, and
then attempting to evaluate the scientific issues of mixture
component structure and such issues as the validity of the
quantal hypothesis, on a less formal post-hoc basis. This ar-
ticle, in contrast, reports on newer models motivated by the
desire to more directly represent the underlying scientific
structure, and hence the resulting data configurations. Hier-
archical mixture models are structured to reflect ranges of
possible and scientifically plausible deviations away from
the central and simplifying quantal structure hypothesis,
and so provide flexibility in modeling observed nonquantal
structure as well as leading to direct and formal assessment
of the hypothesis. This allows exploration and reporting of
a variety of observed departures from this basic hypothesis
and assists in cataloging the diversity of observed excita-
tory postsynaptic potential (EPSP) phenomena. In develop-
ing these models and their analyses, we encounter several
issues of wider interest involving in particular prior mod-
eling, Bayesian computation, parameter identifiability, and
model comparisons. These issues, among others, are dis-
cussed in the context of both theoretical development and
several analyses of neurophysiological datasets. Current re-
search frontiers and future prospects are also noted. To be-
gin, we provide some background on the experimental con-
text and examples of current experimental data, leading into
the basic modeling framework.

Current neurophysiological experimentation enables the
isolation of rather small areas of nerve tissue on large nerve
cells in mammalian central nervous systems and in which
synaptic connections consist of very small (though uncer-
tain) numbers of transmission sites (Turner and Schlieck-
ert 1990). Electrochemical techniques are used to stimu-
late nerve tissue to induce neurotransmitter release across
identified synapses. Electrical potentials are induced in the
cell body of the receiving nerve cell, and estimates of the
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Data set EPSP A

signal response level

Figure 1. Data From the EPSP-A Experiment. The frame displays
a histogram of the EPSP signal data with the estimated normal noise
pdf superimposed on the same scale. The superimposed noise density
is fitted by matching the mean and variance of the concomitant noise
sample.

maximum levels of potential reached as a result of trans-
mission are recorded as summary EPSP signals; the units
of measurement are millivolts, or meV. This is repeated to
produce samples of EPSP levels with sample sizes usually
in the hundreds, termed EPSP signal recordings. The signal
level achieved on any occasion measures indirectly the level
of chemical neurotransmitter released at synaptic sites on
the stimulated neuron on that occasion. The measurements
are subject to various sources of error: background vari-
ability in electrical potentials in the cell, typically includ-
ing rather minor spontaneous transmission effects, synap-
tic noise, and noise arising in the physical and electronic
recording process. Interspersed between signal recordings
are concomitant measurements made under the same ex-
perimental protocols but with no active stimulation of the
nerve tissue, producing similar samples of measurements
on the background noise. These kinds of measurements are
simply termed noise recordings; they provide data on noise
corrupting whatever structure is evidenced in the EPSP sig-
nal data. From the signal and noise datasets together, infer-
ences on the neurophysiological structure underlying neural
transmission, as evidenced by the levels of excitation in the
(noisy) signal responses, are of interest.

Mixture model structure arises naturally from the science
and experimental context, as described in Section 2. To in-
troduce the basic framework, note that neural transmission
stems from individual neurotransmitter release sites on the
isolated area of the presynaptic neuron; when stimulated,
any subset of these sites may release neurotransmitter, and
the resulting postsynaptic potential level change induced
is the sum of levels corresponding to each of these con-
tributions. Suppose that there are s sites, typically fewer
than seven or eight in current experiments. Transmission at
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Figure 2. EPSP-A Signal Data, as in Figure 1 but Rescaled for Clarity.

any site occurs with some probability, possibly site-specific.
Writing u1,...,us for the release levels for the s sites,
it follows that the induced EPSP signal on any occasion
reaches a level in a set 64,...,60, say, where each §; is a
sum of the subset of y; values corresponding to sites trans-
mitting. Thus generally there are k& = 2° possible levels,
and EPSP signal measurements represent selected values
from this set plus contributions from the background ex-
perimental and synaptic noise. The mixture structure arises
because it is impossible to identify which sites transmit on
any occasion. As a result, the signals arise from a mixture
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Figure 3. Histogram of Neural Signal Data From the First Pulse of
the Paired-Pulse Experiment (EPSP B1) on the Same Synaptic Tissue.
There are n = 222 signal observations. The superimposed curve is the
estimated normal density of the background noise.
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of k& = 2° component distributions. The mixture compo-
nents are located at the 6;, themselves linear functions of
subsets of the fundamental site release levels y;; one key
objective is inference about these site levels. The probabil-
ities weighting components are functions of fundamental,
site-specific probabilities that govern transmitter release on
each occasion; these are also uncertain and to be estimated.
The shape of each of the mixture components is that of the
background noise distribution. Throughout this work, the
noise distribution is assumed to be normal, so the problem
is one of inference in a mixture of normals with a common
component variance.

This basic model is elaborated on considerably by de-
veloping structured hierarchical prior distributions for both
the locations and the associated probabilities of the nor-
mal components of the mixture. This modeling is based on
developments to incorporate qualitative aspects of the un-
derlying science by appropriately describing relationships
among the fundamental site-specific release levels and re-
lease probabilities. The number s of underlying release sites
is also uncertain, which induces uncertainty about the num-
ber k of mixture components; our work addresses this is-
sue through prior modeling and sensitivity analyses. For
now, the key point is that the mixture model arises from
the scientific context; nonnormal features evidenced in sig-
nal data configurations thus are attributable to the mixture
parameters. In my models, I negate the original negative
excitatory potential changes so that the y; are nonnegative.
Hence EPSP signal data configurations are expected to ap-
pear as positively skewed, possibly with multiple modes
located near positive component means. The examples dis-
played in Figures 1-4 are typical of current experiments.

I follow most previous works in assuming normally dis-
tributed noise, for two main reasons. First, a primary focus
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Figure 4. Histogram of Neural Signal Data From the Second Pulse of
the Paired-Pulse Experiment (EPSP B2) on the Same Synaptic Tissue.
As in Figure 3, there are n = 222 signal observations and the estimated
normal density of the background noise is superimposed.
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here is to present novel and appropriate models and analy-
ses for the signal recordings, extending previous approaches
based on normal noise distributions. Considering nonnor-
mal noise distributions would unduly complicate and cloud
the key issues here—the objective of closer and more ap-
propriate modeling of the underlying scientific structure of
the signal data. Second, ranges of existing EPSP datasets
and others being generated by neurosurgeons have noise
recordings that closely conform to normality assumptions.
For the future, it should be noted that some EPSP experi-
ments are quite evidently subject to nonnormal errors and
others more subtlety so; hence appropriately capturing the
noise characteristics is clearly important in some EPSP sig-
nal analyses. I am currently involved in developing exten-
sions of the models here to flexibly incorporate nonnormal
noise distributions, extending previous work in signal mod-
els (Cao and West 1996); such extensions will be reported
elsewhere.

A first example EPSP dataset appears in Figures 1 and
2. The normal pdf determined by the sample moments of
the corresponding noise measurements is superimposed on
the signal histogram in Figure 1; the signal dataset alone
appears in Figure 2. The range and shape of the signal his-
togram relative to the noise indicate an overall mixture of
quite a few components with appreciable probabilities, con-
sistent with more than one active release site. This is a typi-
cal data configuration and a typical sample size of n = 325.
This dataset comes from an experiment with synaptic tis-
sue from a region of the hippocampus of rat (Turner, Isaac,
Chen, Stockley, and Wheal 1995b). The datasets to follow
come from similar regions.

Two additional example EPSP datasets appear in Figures
3 and 4. In each case the normal pdf determined by the sam-
ple moments of the corresponding noise measurements is
superimposed on the signal histogram. These data were ob-
tained in a paired-pulse experiment performed by Howard
Wheal of Southampton University. A paired-pulse exper-
iment is designed to investigate changes or adaptations in
the neural response characteristics at a single synaptic junc-
tion due to previous potentiation (e.g., Kullman and Nicoll
1992). In this case the tissue is stimulated as usual to gener-
ate the first EPSP dataset, both noise and signal recordings;
this is EPSP-B1 in Figure 3. Then, following potentiation,
the experiment is rapidly repeated, generating EPSP-B2 of
Figure 4. Inference about differences in release levels, and
in the stochastic nature of neurotransmitter release more
generally, are relevant to physiological theories of adapta-
tion and evolution of nervous systems and are of particu-
lar interest in connection with growth (or deterioration) in
function in mammalian nervous systems and brains (Kull-
man and Nicoll 1992). So it is of interest here to compare
inferences made for the two cases, asking questions about
how the stochastic mechanisms governing transmission may
have changed between the two cases as a result of recent po-
tentiation. The datasets displayed are atypical in the small
sample sizes, which will evidently be a limiting factor in
inferences about site parameters, but are typical of recent
paired-pulse experiments of Wheal, which are designed to
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stimulate rather few neural sites with low release probabil-
ities.

Section 2 describes the basic modeling framework intro-
duced in this article and interesting special cases. This in-
cludes detailed and quite intricate structure for prior distri-
butions for parameters representing individual transmission
site characteristics. Section 3 describes Bayesian analyses
via stochastic simulation, discussing various computational
issues and critical parameter identification questions; the
Appendix contains summary technical details for the simu-
lation analysis. Section 4 summarizes some analyses of the
EPSP-A data, exploring modeling and inference issues of
general concern and discussing the specific neural dataset.
Section 5 discusses analyses of the paired-pulse datasets
with more of a focus on the scientific issues. Section 6
explores a scientifically very important and recent model
extension that introduces significant complications into the
analysis and raises some issues of analysis in the context of
the EPSP-B2 data. Section 7 concludes with some summary
comments and indications of current and expected model-
ing developments.

2. MODELS FOR SITE-SPECIFIC
RELEASE CHARACTERISTICS

2.1 Neural Signal and Noise Models

Replicate measures of maximum EPSP signal levels are
assumed to be independently generated according to an
underlying stochastic, synaptic site-specific mechanism de-
scribed as follows. At the identified synaptic connection, the
experiment isolates a very small region on the axon branch
of a presynaptic neuron, and stimulus of the neuron leads
to chemical neurotransmitter release at some or all of a few

minute synaptic transmission sites. The sum across sites of

the neurotransmitter released on any occasion induces the
potential change in the receiving neuron. This is measured,
subject to noise. Each of the s > 0 release sites transmits
to a site-specific maximum level independently of all other
sites. There is no identification of individual sites (e.g., such
as might arise were one able to physically mark sites in the
synaptic tissue and identify some individual transmissions)
so the sites are arbitrarily labeled 1, ..., s. Site-by-site, it is
assumed that on any trial:

« sites “fire” independently, with individual, site-specific
chances of firing on any occasion

* a transmitting site produces a site-specific, fixed
packet or “quantum” of neurotransmitter

+ recorded maximum EPSP levels present the sums of
potentials induced by the sites transmitting, with ad-
ditive synaptic and experimental noise.

In any experiment individual transmitter release proba-
bilities and transmission levels are assumed to be fixed.
Changes in these characteristics over time due to forced ex-
perimental and environmental changes is of later interest,
and evaluating such changes is one of the guiding moti-
vations in developing these models; see Section 5 for il-
lustration. It is stressed that these assumptions incorpo-

Journal of the American Statistical Association, June 1997

rate and relax standard, consensus assumptions about neural
function underlying EPSP activity. Symbolically, recorded
EPSP levels are represented by y = (y1,...,yn)’, Where
y; is the level on trial ¢; the sample size n is typically a
few hundreds. Given s sites assumed, site j transmits on
any trial with probability 7;, independently of other sites
and independently across trials. The level of transmission
on firing is the site-specific quantity p;. Physically, EPSP
levels are measured via intracellular probes as electrical po-
tentials induced on cell bodies, and responses are in neg-
ative potentials in units of meV. By convention, the read-
ings are negated so that the x; must be nonnegative values.
The recordings are subject to background synaptic and ex-
perimental noise, including both electronic distortions in
recording the cellular potential and errors induced in com-
puting the estimated maximum potential levels. These noise
sources combine to produce additive errors, assumed to
be approximately normally distributed independently across
trials, as discussed in Section 1; write v for the variance of
these normal errors. Concomitant noise measurements are
available to assess this and to provide prior information
relevant to v; differences in cell body potentials measured
without experimental stimulus provide these measurements.
It is stressed that the noise affecting signal recordings has
the same distribution, of variance v, as the raw noise record-
ings, there being no scientific or experimental reason to as-
sume otherwise. A systematic bias in the signal recordings
is also modeled; although the associated noise measures are
typically close to zero mean, the signal recordings are often
subject to a small but nonnegligible potential shift induced
by the experimental procedures. This shift is called m. Then
the following basic signal model is obtained.

For ¢ =1,...,n, the signal observations are conditionally
independent,

s
Yi ~ N(yi|9ia'0) with 91 =m—+ Zzijuj,
j=1

and where the z;; are latent unobserved site transmission
indicators,

1, if site 7 transmits on trial 4
Zii =
Y 0, otherwise.

Under the model assumptions, these indicators are condi-
tionally independent Bernoulli quantities with P(z;; = 1) =
w; for each site j and all trials 3.

Thus EPSP data are drawn from a discrete mixture of
(at most) k = 2° normal components of common variance,
induced by averaging normals determined by all possible
combinations of the z;; and weighted by the corresponding
chances of those combinations. On any trial, the normal
component selected is determined by the column s vec-
tor z; = (21,...,2;s) realized on that trial by individual
sites firing or not firing; the selected component has mean
0; = m + z;p, where p' = (u1,...,us), and is selected
with chance [];_, ;” (1 — m;)*~*4. Specifically, and con-
ditional on all model assumptions and parameters, the y;
are conditionally independently drawn from the distribu-
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tion with density

p(yslps, m,m,v) = p(a|m)p(yil p, 70, m, 0)

Z;

S
H 7r;” (1—m)t=2
i=1

X N(yi|m+z§u, U)’ (1)
where the s vector z, ranges over all 2° possible values.
If there are common values among the site levels y;, then
the mixture distribution function will be equivalent to one
with fewer than 2° components. Also, if either p; = 0 or
m; = 0, then site j disappears from the model and the dis-
tribution reduces to a mixture of at most 2°~! components.
Additional cases of special interest include:

a. So-called compound binomial models, in which the
transmission levels are equal, all at a basic quan-
tum level o, but release probabilities differ. The ag-
gregate transmission levels then run between m and
m + sug and the mixture of 2° normal components
effectively reduces to a mixture of just s + 1, with
associated weights determined by the discrete com-
pound binomial resulting from the distinct chances
m,...,Ts across sites. These kinds of special cases
have received considerable attention in the literature
(Kullman 1992; Walmsley et al. 1988).

b. Precise quantal-binomial models, in which the site lev-
els are equal and the release probabilities are con-
stant too, m; = mp. Now the mixture reduces to one
with distinct normal means m + juo (7 = 0,...,'s),
and binomial weights (5)73(1 — m)*~/ (Clements
1991; Martin 1966; Redman 1990).

In previous work, following others, I modeled EPSP data
in the framework of standard mixture models for density
estimation from a particular Bayesian viewpoint (see, e.g.,
West and Cao 1993 and West and Turner 1994, and Escobar
and West 1995 for statistical background). In these mod-
els the component means and weights are essentially unre-
stricted, rather than being modeled directly as functions of
the underlying synaptic parameters p and 7. A significant
drawback is that it is then in general very difficult to trans-
late posterior inferences about unrestricted normal mixture
model parameters to the underlying p and 7 parameters of
scientific interest, especially in the context of uncertainty
about s. One simple example of West and Turner (1994)
shows how this can be done; that is a rare example in which
the data appear to be consistent with the full quantal hypoth-
esis, so that the convoluted process of backtracking from
the mixture model to the underlying site-specific parame-
ters is accessible. However, I have encountered very few
datasets in which this is the case, and this inversion process
is generally difficult. Hence the direct approach, inferring
the neural parameters directly, is developed.
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2.2 Prior Distributions for Synaptic Parameters

Model completion requires specification of classes of
prior distributions for the determining parameters pu, m, m,
and v for any given s. Assessment of reasonable values
of s, as well as values of the p and 7 quantities for any
given s, is part of the statistical inference problem. From
a technical viewpoint, uncertainty about s can be formally
included in the prior distribution, so as to provide poste-
rior assessment of plausible values. The models below al-
low this. From the viewpoint of scientific interpretation,
however, inference about the site parameters are best made
conditional on posited values of s, and then issues of sen-
sitivity to the number of sites explored. Development and
examples explore these issues in detail.

Begin by conditioning on a supposed number of sites s.
Current implementation assumes priors for all model pa-
rameters which, though rather intricately structured in cer-
tain dimensions to represent key qualitative features of the
scientific context, are nevertheless inherently uniform in
appropriate ways, providing reference initial distributions.
Note that other classes of priors may be used (some obvious
variations are mentioned later); however, those used here
are believed to be appropriately vague or uninformative so
that resulting posterior distributions provide benchmark or
reference inferences that may be directly compared to other
approaches (see, e.g., Kullman 1989, 1992).

In addressing uncertainty about s alone, I make the ob-
servation that models with fewer than s sites are implic-
itly nested within a model having s sites. To see this, con-
strain some r > 0 (arbitrarily labeled) site levels u; to be 0;
then (1) reduces to precisely the same form based on s — r
sites, whatever the value of the 7; corresponding to the ze-
roed p;. Zeroing some p; simply confounds those sites with
the noise component in the mixture—a site transmitting a
zero level with any probability simply cannot be identified.
Hence assessing whether or not one or more of the site lev-
els are 0 provides assessment of whether or not the data
support fewer sites than assumed. This provides a natural
approach to inference on the number of active sites, assum-
ing that the model value s is chosen as an upper bound.
Note that a similar conclusion arises by considering m; = 0
for some indices j; that is, an inactive site may have a zero
release probability rather than (or as well as) a zero release
level. However, the zeroing of a site probability induces a
degeneracy in structure of the model and obviates its use
as a technical device for inducing a nesting of models with
fewer than s sites in the overall model. Hence my models
define inactive sites through zeros among the p;, restrict-
ing the 7; to nonzero values, however small. Thus p; =0
for one or more sites j is the only way that the number of
active sites may be smaller than the specific s.

2.2.1 General Structure. For a specified s, analyses
reported here are based on priors with the following struc-
ture. Quantities p, w, (m,v) are mutually independent. I
describe classes of marginal priors for p and 7 separately;
each involves certain hyperparameters that themselves are
subject to uncertainty described through hyperpriors, in a
typical hierarchical modeling framework, and these hyper-
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parameters also are assumed to be mutually independent. To
anticipate later development hyperparameters denoted by ¢
and a are associated with the prior for p, a single quantity
b determines the prior for 7r, and the joint prior is then of
the form

p(l"ﬂ ~,m,v,q,a, b)
= p(ﬂ, ™, m, 'Ulq, a, b)p(q’ a, b)
2

The component densities here are now described in detail.
Two comments on notation: First, conditioning statements
in density functions include only those quantities that are
required to determine the density, implicitly indicating con-
ditional independence of omitted quantities; second, for any

= p(ulg, a)p(r|b)p(m, v)p(q)p(a)p(b).

vector of h quantities x = (z1,...,zp) for any j < h, the
notation x_; represents the vector x with z; removed; that
is, X_j=X— {18]} = (1‘1, ey L1, L1y e ,.’I)h)/.

2.2.2 Priors for p and Hyperparameters q, a. 1 de-
velop a general classes of priors for ¢ and comment on
various special cases. The class has the following features:

a. a component baseline uniform distribution for each p;
over a prespecified range (0, u), with a specified upper
bound »

b. components introducing positive prior probabilities at
0 for each of the y; to permit assessment of hypothe-
ses that fewer than the chosen (upper bound) s are ac-
tually nonzero, and hence to infer values of the num-
ber of active sites

¢. components permitting exact common values among
the elements of p to allow for the various special cases
of quantal transmission, and specifically the questions
of whether or not pairs or subsets of sites share es-
sentially the same quantal transmission level.

These are developed as follows. Let F'(-) be distribu-
tion on (0, u), having density f(-), for some specified upper
bound u. Write §p(z) for the Dirac delta function at z = 0
and U (-|a, b) for the continuous uniform density over (a, b).
Then suppose that the p; are conditionally independently
drawn from the model

(131F, q) ~ qbo(uj) + (1 — @) f(1y)

for some probability gq. Write h for the number of
nonzero values among the puj;, so that h is the number
of active sites. Then h is binomial, (h|s,q) ~ Bn(h|s,1
— q) with mean s(1 — ¢), independent of F'. If F' were uni-
form, say U(:|0,u), then this prior would neatly embody
the first two desirable features a and b just described. Note
the two distinct cases:

+ Setting g = 0 implies that h = s is the assumed num-
ber of active sites, so then inference proceeds condi-
tional on p; > 0 for each j.

+ Otherwise, restricting to ¢ > 0 allows for assessment
of the number of active sites, subject to the specified
upper bound s. In practice I assign a hyperprior to
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q in the case ¢ > 0. The class of beta distributions
is-conditionally conjugate, and the uniform prior sug-
gests itself as a reference, ¢ ~ U(g|0,1). One imme-
diate, and nice, consequence of a uniform prior is that
the resulting prior for the number of nonzero values
among the y; has (averaging the binomial with respect
to q) a discrete uniform prior over 0,1,...,s. This is
a suitably vague and unbiased initial viewpoint with
respect to the number of active sites. Other beta priors
may be explored, of course. One specific choice used
in the current work is (g|s) ~ Be(q|s — 1,1); note
the explicit recognition of dependence on the speci-
fied values of s. The reasoning behind this choice is
as follows. First, the current EPSP experiments are de-
signed to isolate rather small numbers of sites, down
to just a few (say one—four) from the viewpoint of sci-
entific intent and expectation. So s values up to 7 or 8
may be explored, but lower values are typical. What-
ever value of s is chosen, h is expected to be in the
low integers, thus guiding the choice of the prior for
g to induce a prior for h favoring smaller values. Con-
sider values of s in the relevant range 3 < s < 8, or
so. Then, integrating p(h|s, ¢) with respect to the spe-
cific prior (q|s) ~ Be(g|s — 1,1) yields a distribution
p(h|s) that is almost completely insensitive to s, hav-
ing a diffuse and decreasing form as h increases, and
with E(h|s) = 1 for any such s. This specific beta
prior for ¢ thus has the attractive feature of consis-
tency with a scientifically plausible prior p(hls) =
p(h), incorporating the scientific view of likely small
numbers of active sites and almost independently of
the upper bound s specified.

This structure provides a baseline uniform prior for re-
lease levels, together with the option for allowing a smaller
number of sites than the s specified. So far, however, there is
no explicit recognition of the special status in the scientific
area of quantal hypotheses as represented through common
values among the p;. If F'(-) is a continuous distribution,
then the prior implies that the nonzero 4, are distinct. Al-
though this might allow arbitrarily close p; values, it is de-
sirable to have the opportunity to directly assess questions
about common values, and perhaps subgroups of common
values, in terms of posterior probabilities. There is also a
significant technical reason (discussed in Section 3 in con-
nection with issues of parameter identification) that calls
for a prior that gives positive probability to exact equality
of collections of the nonzero p;. Thus I extend the prior
structure so-far discussed to provide this. I do this using a
standard Dirichlet model, fully described in Appendix A.
Specifically, a Dirichlet process prior for F' induces a dis-
crete structure that gives positive prior probability to es-
sentially arbitrary groupings of the set of nonzero y; into
subsets of common values; this is a general framework that
permits varying degrees of partial quantal structure, from
the one extreme of completely distinct values to the other of
one common value. This structure is most easily appreciated
through the resulting set of complete conditional posterior
distributions for each of the u; given pu_;. As detailed in
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Appendix A, these are defined by

p(kjl—4,9,a) = qbo(u;) + (1 —q)

i Z 6, (1

1EN,

X { U(p[0,u) + (1 —75)h } 3)
where h; is the number of nonzero elements of p_;, N;
is the corresponding set of indices, N; = {iju; > 0,i =
L,...,851 # j}, and r; = a/(a + h;). The hyperparame-
ter a is subject to uncertainty and is included in the anal-
ysis using existing approaches for inference on precision
parameters in Dirichlet models, developed by West (1992)
and illustrated by Escobar and West (1995). As these au-
thors showed gamma priors for a, or mixtures of gamma
priors, are natural choices. The current application uses dif-
fuse gammas models.

In summary, (3) shows explicitly how site level u; may
be 0 (implying an inactive site), may take a new nonzero
value, or may be equal to one of the nonzero values of
other sites. The roles of hyperparameters ¢ and a are evi-
dent in this equation. With this structure, prior components
p(plg, a)p(q)p(a) of the full joint prior in Equation (2) have
been defined.

2.2.3 Priors for m and Hyperparameter b. The struc-
ture of the prior for 7 parallels, in part, that of u in allow-
ing common values. The detailed development for p can be
followed through with the same reasoning about a baseline
prior and a structure to induce positive probabilities over
subsets of common values. I restrict the discussion to pos-
itive release probabilities, as discussed earlier, so that the
prior structure for the 7; is simpler in this respect. Specif-
ically, assume that the 7; are independently drawn from
a distribution on (0, 1) assigned a Dirichlet process prior.
Take Dirichlet precision b > 0 and base measure bU (-|0, 1).
Then, as in the development for p, the full joint prior p(w|b)
is defined by its conditionals

(mj|m—j,b) ~ wU(m;]0,1)

+(1-w)(s—1)"

Z 671'1 7!'3 (4)

i=1,i#j

for each j = 1,...,s, and where w = b/(b+ s — 1). As
for the site levels, the induced posteriors will now allow in-
ference on which sites may have common release probabil-
ities, as well as on the precise values of such probabilities.

Nonuniform beta distributions might replace the uniform
baseline in application, and they are particularly relevant in
analyses of more recent datasets generated with a view to-
ward engendering rather low levels of excitation consistent
with expected low levels of release probabilities. The analy-
ses reported herein retain the uniform prior, for illustration
and so as to avoid question of overtly biasing toward lower
or higher values. Note also that the possibility of nonzero
release probabilities is explicitly excluded, although some
or all may be very small, and so 7; = 0 is ruled out as a
device for reducing the number of active sites. The num-
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ber of active sites is completely determined by zero values
among the p;, as discussed earlier.

As with a in the model for the site levels, the hyperparam-
eter b is assigned a prior, and again a diffuse gamma prior
is natural. With this structure, the additional prior compo-
nents p(7|b)p(b) of the full joint prior in Equation (2) have
been defined.

2.2.4  Priors for Noise Moments m and v. In most ex-
periments one can anticipate a possible systematic bias m in
both noise and signal recordings, induced by the direct mea-
surement of cell membrane potential. This is typically very
small relative to induced EPSP levels, and the raw noise
recordings provide data on which to assess this. In addition,
the noise measurements inform on background variability
v; that is, they are drawn from the N(-|m,v) distribution.
In my analyses, the prior for m and v as input to the signal
analysis is simply the posterior from a reference analysis
of the noise data alone; that is, a standard conjugate nor-
mal, inverse gamma distribution based on the noise sample
mean, variance, and sample size.

With this structure, the final component p(v,m) of the
full joint prior in Equation (2) has been defined.

3. POSTERIOR DISTRIBUTION
AND COMPUTATION

Calculation of posterior distributions is feasible, as might
be expected, via variants of Gibbs sampling (see, e.g.,
Gelfand and Smith 1990, and Smith and Roberts 1993).
The specific collection and sequence of conditional poste-
rior distributions used to develop simulation algorithms are
described in some mathematical detail in Appendix B and
briefly summarized here.

A key step is to augment the data with the latent site
transmission indicators z; thus the sampling model is ex-
panded as

p(y,zlp, m,m,v,q,a,b) = p(y|p,z,m,v)p(z|r)

- {HN<yi|m+z;u,v>}

=1

j=1li=1

{HHW% (1 —m)'" Z”}a

providing various conditional likelihood functions that are
neatly factorized into simple components. The full joint
posterior density for all model parameters together with
the uncertain indicators z has the product form

p(K, m,2,m,,4,a,by) < p(ulg, a)p(q)p(a)p(z|m)

x p(m|b)p(b)p(m, v)p(y|u, 2, m,v), (5)

where the component conditional prior terms are as de-
scribed in the previous section.
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3.1 Conditional Posteriors and Markov Chain
Monte Carlo

The posterior (5) yields a tractable set of complete con-
ditional distributions characterizing the joint posterior, and
hence leads to implementation of Gibbs sampling based on
this structure. Each iteration of this Markov Chain Monte
Carlo (MCMC) sampling scheme draws a new set of all
parameters and latent variables by sequencing through the
conditionals now noted; Appendix B gives full details and
derivations.

1. Sampling site levels p proceeds by sequencing
through j = 1,...,s, at each step generating a new value
of u; given the latest sampled values of p_; and all
other conditioning quantities. For each j, this involves sam-
pling a posterior that is a simple mixture of several point
masses with a truncated normal distribution. Sampling ef-
ficiency is improved using variations of so-called configu-
ration sampling for the discrete components, as introduced
by MacEachern (1994) and developed by West, Miiller, and
Escobar (1994).

2. Sampling site release probabilities 7 similarly pro-
ceeds by sequencing through j = 1,...,s, at each step gen-
erating a new value of 7; given the latest sampled values of
m_; and all other conditioning quantities. For each j, this
involves sampling a mixture of discrete components with
a beta component. Again, configuration sampling improves
simulation efficiency.

3. Sampling transmission indicators z involves a set of n
independent draws from conditional multinomial posteriors
for the n individual binary 2°-vectors z;, 7 = 1,...,n. These
simulations are easily performed.

4. Sampling the systematic bias quantity m involves a
simple normal draw.

5. Sampling the noise variance v involves sampling an
inverse gamma posterior.

6. Sampling the hyperparameter g is also trivial, simply
involving a draw from an appropriate beta distribution.

7. Sampling the hyperparameters a and b follows West
(1992) and Escobar and West (1995) and involves a minor
augmentation of the parameter space, with simple beta and
gamma variate generations.

Iterating this process produces sequences of simulated

values of the full set of quantities ¢ def {1, ™, z, m, v, g,
a, b}, which represent realizations of a Markov chain in ¢
space whose stationary distribution is the joint posterior (5)
characterized by the conditionals. The precise sequence 1-7
of the foregoing conditional posteriors (detailed more fully
in Appendix B) is the sequence currently used in simulation;
at each step, new values of the quantities in question are
sampled based on current values of all quantities required
to determine the conditional in question. Convergence is
assured by appeal to rather general results, such as those
of Tierney (1994, especially thm. 1 and cor. 2) relevant to
the models here; this ensures that successive realizations of
¢ = {p,m,2,v,q,a,b} generated by this Gibbs sampling
setup eventually resemble samples from the exact posterior
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in (5). Irreducibility of the resulting chain is a consequence
of the fact that all full conditionals defining the chain are
everywhere positive. Practical issues of convergence are ad-
dressed by experiments with several short runs from various
starting values. Important practical issues of convergence is
discussed in the next section and in the EPSP data analyses
that follow.

3.2 Parameter Identification and Relabelling
Transmission Sites

The model structure as described is not identifiable, in
the traditional sense of parameter identification especially
associated with mixture models (Titterington, Smith, and
Makov 1985, chap. 3). This is obvious in view of the lack of
any physical identification of the neural transmission sites
arbitrarily labelled j = 1,...,s; for example, 7 is the re-
lease probability for the first site in the labelling order, but
this could be any of the actual release sites. As a result, the
model is invariant under arbitrary permutations of the la-
bels on sites, and likelihood functions are similarly invariant
under permutations of the indices of the sets of parameters
(1, 7;). Also, as the priors for the y; and 7; separately are
exchangeable, corresponding posteriors are also invariant
under labelling permutations.

To impose identification requires a physically meaning-
ful restriction on the parameters. Perhaps the simplest, and
most obvious, constraint is to order either site levels or
site release chances. This can be done with the site release
levels. In posterior inferences, relabel so that site j corre-
sponds to release level pu;, the jth largest value in u. Be-
cause the priors, and hence the posteriors, include positive
probabilities on common values, ties are broken by impos-
ing a subsidiary ordering on the release probabilities for
(ordered) sites with common release levels. Thus if us, w4,
and p5 happened to be equal, the sites relabelled 3, 4, and
5 would be so chosen in order of increasing values of their
chances ;; were these equal too, as permitted under the pri-
ors and hence posteriors here, then the labelling is arbitrary
and there are (in this example) three indistinguishable sites:
common release levels and common release probabilities.
The posterior analysis required to compute corresponding
posterior inferences is extremely simple in the context of
posterior simulations; each iteration of the Gibbs sampling
analysis produces a draw of (u, ) (among other things).
Given a draw, a separate vector p* is created containing
the ordered values of u, then a second vector 7* is created
containing the elements of w rearranged to correspond to
the ordering of p to w*. If subsets of contiguous values
in p* are common, then the corresponding elements in 7*
are rearranged in increasing order themselves. Through it-
erations, repeat draws of (u*,7*) are saved, building up
samples from the required posterior distribution that incor-
porates the identification of sites.

Note that alternatively, the model could be identified by
a primary ordering on the m;, rather than on the ;. In data
analyses I routinely explore posterior summaries identified
each (i.e., ordered by p; and ordered by =;), as each is
only a partial summary of the full posterior. This is relevant
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particularly in cases when it appears that the data are in
conformity, at least partially, with quantal structure. Some
discussion follows in data analyses in later sections.

In connection with this ordering issue, the quantal struc-
ture of the priors for p and = is very relevant, as alluded
to earlier. Consider an application in which the data sup-
port common, or very close, values among the x;. Suppose
that the prior is simply uniform, with no chance that con-
secutive values of the ordered p; are equal. Then impos-
ing the ordering for identification results in a distortion of
inferences—values that should be judged close, or equal,
are “pushed apart” by the imposed ordering. This undesir-
able effect is ameliorated by the priors used, allowing exact
equality of neighboring levels. The same applies to the ;.

Note that the original, unidentified parameterization for
model specification is retained, and the simulation analysis
operates on the unconstrained posteriors. This has a the-
oretical benefit in allowing easy and direct application of
standard convergence results (Tierney 1994). More practi-
cally, it has been my experience that imposing an identify-
ing ordering on parameters directly through the prior distri-
bution hinders convergence of the resulting MCMC on the
constrained parameter space. This arises naturally as the or-
dering induces a highly structured dependence between pa-
rameters, relative to the unconstrained (albeit unidentified)
parameter space. In addition, one rather intriguing practical
payoff from operating the MCMC on the unrestricted space
is an aid in assessing convergence of the simulation. This is
due to the exact symmetries in posterior distributions result-
ing from permutation invariance, partly evidenced through
the fact that marginal posteriors p(u;,7;|y) are the same
for all j. Hence summaries of marginal posteriors for, say,
the p; should be indicative of the same margins for all
J; the same holds for the ;. However, in many applica-
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Figure 5. Summaries From Analyses of EPSP-A Data: Predictive
Densities From Analyses in Models With Three Sites (Dotted Line), Four
Sites (Dashed Line), and Five Sites (Full Line).
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tions convergence will be slow. One reason for this is that
in some models and with some observed signal datasets,
the posterior will concentrate heavily in widely separate
regions of the parameter space, possibly being multimodal
with well-separated modes. Such posteriors are notorious in
the MCMC literature, and the Gibbs sampling routine may
get “stuck” in iterations in just one (or typically several)
region of high posterior probability, or around a subset of
modes. Some of the examples that follow illustrate this phe-
nomenon, and there is certainly need for further algorith-
mic research to provide faster alternatives to the raw Gibbs
sampling developed here (possibly based on some of the
methods mentioned in Besag and Green 1993 or Smith and
Roberts 1993, for example). However, this is not a problem
as far as the ordered site levels, and the correspondingly re-
ordered release probabilities, are concerned, due to the sym-
metries in the unconstrained posterior. This is because pos-
terior samples from one region of the (u, ) space may be
reflected to other regions by permuting sites indices, while
the resulting ordered values remain unchanged. Hence the
unconstrained sampling algorithm may converge slowly as
far as sampling the posterior for (u,7r), but the derived
sequence for (p*,7*) converges much faster. This is dis-
cussed further in data analysis in Section 4.

Due to the lack of identification, actual output streams
from MCMC simulations exhibit switching effects, as pa-
rameter draws jump between the modes representing the

“identification issue. For example, in a study supporting two

distinct site release levels with values near 1 and 2 meV,
the simulated series of the unidentified p; (u2) tends to vary
around 1 meV (2 meV) for a while, then randomly switch
to near 2 meV (1 meV) for a while, and so on. My ex-
perience is that across several analyses of different EPSP
datasets, convergence is generally “clean” in the sense that,
following what is usually a rapid initial burn-in period, the
output streams remain stable and apparently stationary be-
tween points of switching between these posterior modes.
Informal diagnostics based on a small number of short re-
peat runs from different starting values verify summarized
analyses from one final, longer run. In addition, the theoret-
ical convergence diagnostic based on the symmetry of the
unidentified posterior is used in final analysis, as illustrated
later.

4. ANALYSES OF THE EPSP-A DATASET

Some summaries of initial analyses of the EPSP-A are
displayed in Figures 5-10. First, three separate analyses
were performed using models with s = 3, 4, and 5, re-
spectively; to do this, ¢ = 0 was set in the prior p(u|q,a)
to fix the number of sites at the specified s value in each
case. The prior for the p; has u = 20.0. Each MCMC sim-
ulation was run for 45,000 iterations; summaries of the last
40,000 are reported. Informal assessment of convergence
was performed as discussed at the end of Section 3.

Figure 5 displays posterior predictive density functions
from the three analyses—Bayesian density estimates, of
use in graphical assessment of model fit. These are sim-
ply computed as Monte Carlo averages of the density func-
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Figure 6. Summaries From Analyses of EPSP-A Data: At Each Site
Index j, Posterior Intervals for the Ordered u; in Analysis With Four Sites
(Left Interval), and Five Sites (Right Interval). These are 98% equal tail
intervals with the medians, quartiles, and 5% and 95% points marked.

tion (1), across a range of y values, averaging with respect
to the 40,000 posterior draws of all parameters. There are
sharp differences between the case s = 3 and the oth-
ers, but s = 4 and 5 produce rather similar density esti-
mates. Increasing s beyond 5 makes little difference to the
estimated density function. Corresponding informal com-
parisons of the cumulative distributions plotted against the
empirical cdf of the signal data indicate close conformity
of the data with cases s = 4 or 5, but apparent discrep-
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Figure 7. Summaries From Analyses of EPSP-A Data: At Each Site
Index j, Posterior Intervals for the m;, in Order of Increasing Values of
the ;. As in Figure 6, the two analyses represented have four sites (left
interval) and five sites (right interval).
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ancies with models based on fewer than four sites. Fur-
ther graphical diagnostics based on inverting the predic-
tive cdf and plotting against ordered data values provides
a useful, if somewhat informal assessment of model ade-
quacy. Such graphical diagnostics and comparisons agree
with more formal analyses in the model allowing ¢ > 0
with s specified as the maximum number of active sites,
and using the Be(g|s — 1,1) prior for ¢, discussed earlier.
(Similar results arise with a uniform prior.) Approximate
posterior probabilities on the number h of active sites are
as follows: at s = 3, P(h = 3|y,s =3) = l;ats =4, P(h =
3ly,s =4) ~ .14 and P(h = 4|y,s = 4) ~ .86; at s = 5,
P(h =4|y,s =5) ~ .49 and P(h = 5|y,s = 5) ~ .51; at
s =6, P(h=4|y,s = 6) = .30, P(h = 5|y,s = 6) = .43,
and P(h = 6]y,s = 6) ~ .27. These summaries reflect the
inherent uncertainties in estimating the number of active
sites and the problem of overfitting as higher numbers are
permitted. Though the prior for ¢ marginally favors lower
values of h, increasing s allows more sites and the model
naturally tends to overfit, attempting to tailor itself to in-
creasing minor features in the data, as is common in other
varieties of mixture models. On the basis of parsimony,
h = 4 is identified as a minimally acceptable number of
active sites, and h = 5 seems relatively favored. Models
with s = h =4 and s = h = 5 are discussed further.
Figures 6 and 7 summarize the marginal posteriors for y
and 7 in each of the analyses with four and five active sites.
Figure 6 displays approximate 98% equal-tailed posterior
intervals for pq,..., us, for each of h = s = 4 and 5, with
the levels ordered for identification; the vertical bars in each
case run from the lower 1% to the upper 99% posterior
quantile and have medians, quartiles, 5% and 95% points
marked. At site index 7 = 1, for example, the two vertical
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Figure 8. Summaries From Analysis of EPSP-A Data Withs = h = 4
Active Sites: Data Histogram and the Predictive Density From the Anal-
ysis. Uncertainty about the predictive density is crudely indicated via
pointwise bands representing =+ 1.65 posterior standard deviations about
the density estimate.
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Figure 9. Summaries From Analysis of EPSP-A Data With s = h =
4 Active Sites: Posterior Intervals for the Unidentified Release Levels ;.

bars correspond to posterior intervals for u;, the smallest
release level, from each of the two separate analyses. The
vertical scale is meV. At j = 5, naturally there is only
one interval, for us from the second analysis. There are
apparent differences; analysis with just four sites naturally
favors higher p; values at higher levels to accommodate the
skewed upper tail of the signal data. In each analysis, the

graphs indicate differences among the site release levels. -

This is supported by approximate posterior probabilities on
equal/quantal values in the two analyses, which indicate
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Figure 10. Summaries From Analysis of EPSP-A Data Withs = h =
4 Active Sites: Posterior Intervals for the Unidentified Release Probabil-
ities ;.
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strong support for at least three distinct values among the
levels of active sites in each case. Write ~A* for the number
of distinct values. Then, in analysis with s = h = 4, the
approximate posteriors are P(h* = 3|y, h = 4) = .64, and
P(h* = 4]y, h = 4) = .32, whereas in analysis with s = h =
5 these are P(h* = 3|y, h = 5) = .58, P(h* = 4|]y,h =5) =
.28, and P(h* = 5|y, h = 5) = .03. For release probabilities
m; in order of increasing p;, intervals appear in a similar
display in Figure 7. Now the differences are less apparent,
though still evident. Write k* for the number of distinct
values among the probabilities. Then, in analysis with s =
h = 4, the approximate posteriors are P(k* = 2|y, h =4) =
.53 and P(k* = 3|y,h = 4) = .37, and when s = 5 these
are P(k* = 2|y,h = 5) = 45, and P(k* = 3|y,h = 5) =
.30, for example. This does suggest more disparity among
the release levels than among the release chances, although
there are differences and considerable uncertainty. What is
clear is that a strict quantal structure with a single common
release level and a single common release probability is
quite untenable. This dataset is also typical of many in that
there is the appearance of more disparity among the release
levels than among release probabilities.

Further summaries of the analyses with fixed s = h = 4
appear in Figures 8-10. In Figure 8, the predictive density
is superimposed on a data histogram, with some indications
of uncertainty in terms of pointwise intervals representing
+1.65 approximate posterior standard deviations about the
density estimate. Figures 9 and 10 display, site by site, ap-
proximate 98% intervals, with quantiles marked as in earlier
figures, but now for the unidentified 1; and ;. Recall that
the 4; share a common marginal posterior, as do the ;.
These figures indicate that the Monte Carlo output sum-
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Figure 11. Summaries of Analyses of the EPSP-B1 Data: Posterior
Predictive Densities From Two Separate Analysis With h = s = 2 and
h = s = 3, Together With a Histogram of the Data. The density curves
are from the model with h = 2 (full line) and h = 3 (dashed line).
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Figure 12. Summaries of Analyses of the EPSP-B1 Data: Posterior
Intervals for the Ordered u;. At each j, the left interval corresponds to
analysis with h = s = 2 sites; the right interval, to h = s = 3 sites.

marized is in close conformity to this theoretical exactness,
acting as a confirmatory convergence diagnostic in this case.

Some comments about convergence of the Gibbs sam-
pling algorithms from a practical perspective are in order.
The predictive density function and posteriors for both or-
dered release levels and release probabilities displayed in
the figures are stable over iterations, and in fact converge
quite rapidly; the general features displayed appear after a
few thousand, sometimes a few hundred iterations of the
simulation algorithm. In this example, as in most real anal-
yses, the true posterior margins are multimodal, reflecting
the lack of identification of the unconstrained parameters;
in the full parameter space there are multiple modes in the
joint posterior. MCMC iterations tend to “stick” around
a posterior mode, sometimes for a long while, and this
is exacerbated when there are evidently distinct and sep-
arated release levels and/or probabilities, so that the modes
are widely separated. Although the lack of convergence
and lack of identification is “problematic,” it works to an
advantage here, as discussed earlier. Mapping to the or-
dered/identified parameters induces physical interpretation,
and convergence is not such an issue, because the regions
of unconstrained parameter space “explored” by the simula-
tion are simply reflected under all parameter permutations.
Also, the extent to which the margins in the unconstrained
parameters differ is related to the extent of real differences
in underlying site levels and/or chances; bigger differences
induce more widely separated concentrations of posterior
mass, and usually posterior modes, resulting in poor con-
vergence for the unconstrained parameters.

5. ANALYSIS OF PAIRED-PULSE EPSP DATASETS

Figures 11-13 provide outputs from an analysis of the
first of the paired-pulse datasets EPSP-B1 in Figure 3, in a
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format similar to that just described for the EPSP-A anal-
yses. In analysis with s = 4 and the Be(g|s — 1,1) prior
on g, approximate probabilities P(h = 2|y,s = 4) = .61,
P(h =3ly,s =4) ~ .24, and P(h = 4]y,s = 4) =~ .16 are
found, suggesting just two or at most three active sites; the
issues of overfitting and parsimony considerations discount
the .16 probability on four active sites. Figures 12 and 13
display posterior intervals for the release levels and chances
under models with fixed numbers of sites A = s = 2 and
h = s = 3; recall that these intervals have medians, quar-
tiles, and 1%, 5%, 95%, and 99% points marked.

Note the close similarity of predictive density functions
in Figure 11, the main difference being that the model
with two sites leads to more evident minor modes around
3 meV and 5 meV. From Figure 13, it appears that the
two or three sites have rather low release probabilities
around .07-.12. The data strongly support quantal structure
in these probabilities, with P(k* = 1|y, h = 2) = .94 and
P(k* = 1|y, h = 3) = .84. Release levels are likely distinct,
with P(h* = 2|y, h = 2) = 1 and P(h* = 3|y,h = 3) = .55
and with estimated values near 2.5-3 meV and 4.5-5 meV
for a two-site model and around 2-3 meV, 3—4 meV, and 4-5
meV for a three-site model. From Figure 12, note the signif-
icant uncertainties about release levels under the three-site
model, partly due to the small sample size. This, coupled
with small release probabilities, means that there are a very
few, heavily influential observations really informing about
site levels; in particular, the data around 7.5 meV in the
histogram are influential in determining the sum of two or
three of the ;. Figure 13 indicates relatively higher pos-
terior precision in estimating release probabilities, with the
exception of 7 in the three-site model. In this latter analy-
sis, although much posterior mass for 71 is concentrated in
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Figure 13. Summaries of Analyses of the EPSP-B1 Data: Posterior
Intervals for the m; in Order of Increasing ;. At each j, the left interval
corresponds to analysis with h = s = 2 sites; the right interval, to h =
s = 3 sites.
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Figure 13. Summaries of Analyses of the EPSP-B2 Data: Posterior
Predictive Densities From the Two Analyses Together With a Histogram
of the Data. The density curves are from the model with h = 3 (full line)
and h = 4 (dashed line).

the .07-.12 range, the marginal posterior is diffuse over a
range of values consistent with the baseline uniform prior;
this reflects the fact that the existence of a third site is
dubious, related to the high degree of uncertainty about ;.

Figures 14-16 display similar graphical summaries of an
analysis of the EPSP-B2 dataset, the second of the paired-
pulse datasets. These are to be compared to the inferences
for EPSP-B1 just described. It is apparent from the sig-
nal histogram that, working with the same synaptic tissue,
there is more “action” in EPSP-B2 than in EPSP-B1 in
the sense of higher EPSP levels. Neurologists are inter-
ested in whether this potentiation-induced activity is due
to increased release probabilities or increased transmission
levels, or both.

Analysis with ¢ > 0 to assess the number of active sites
indicates three or four sites. For a maximum s = 4, as in
analysis of the first pulse, the approximate posteriors are
P(h =3ly,s =4) = .32 and P(h = 4|y,s = 4) = .68. At
a maximum of s = 5, these are P(h = 3|y,s = 5) = .13,
P(h =4|y,s =5) = .55, and P(h = 5|y, s = 5) = .32. This
rather strongly indicates four active sites, particularly in
view of the overfitting issue, which is an increased number
relative to the first pulse, prepotentiation. The estimated
predictive densities from three-, four-, and five-site models
are almost indistinguishable; see Figure 14. Conditional on
the likely four active sites, the marginal posterior on the
number of distinct release levels have approximate masses
of P(h* = 2,3,4]y,h = s = 4) ~ .44, .37, and .15; that
for the number of distinct release probabilities is P(k* =
1,2,3|ly,h = s = 4) = .63, .29, and .08. In summary, it
appears reasonable to infer that the likely four active sites
share a common release probability, but differ in release
levels. This is again a consistent feature across a variety of
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experimental datasets. Release probabilities across sites are
small; on a four-site model, the margins displayed in Figure
16 suggest that 7; lie in the region of .1-.2, with posterior
medians around .14-.16.

Combining and comparing these inferences to the analy-
sis of the EPSP-B1 data leads to the following conclusions
about the nature of the synaptic junction being explored and
the effects of the potentiation experiment. It seems plausi-
ble that there be four transmission sites. (Note that analysis
based on s = 5 sites supports this conclusion.) Initially, sites
are activated with a common but very low release probabil-
ity, around .07-.1. In the first pulse only two or three sites
are active, with differing transmission levels in the 3—-5 meV
range; if just two sites are active, then the levels are fairly
precisely estimated at about 2.5-3 meV and 4.5 meV. Fol-
lowing potentiation, the second pulse, dataset is suggestive
of the following effects. First, the site release probabilities
are still constant across sites but have increased to around
.14-.16 or higher, perhaps a doubling of the common release
probability in the first pulse. This ties in with a leading hy-
pothesis about the physiological effects of potentiation (see,
e.g., Kullman and Nicoll 1992) that following potentiation,
release sites are in a state of more immediate readiness to
transmit and thus will be more likely to do so at the rapid
repeat stimulation in a paired-pulse experiment. Indeed, the
support for more active sites in the second pulse suggests
the existence of four sites, that are simply not evident in
the first pulse experiment; potentiation brought these sites
“to life,” and they are evident in the second pulse. The ef-
fects on transmission levels seem to work in the opposite
direction. On a four-site model, the second pulse has re-
lease levels generally lower than those of the two or three
sites evident in the first pulse. Although this is a tentative
conclusion in view of the high levels of posterior uncer-
tainty about the ordered release levels in the second pulse,
it is also consistent with physiological theory suggesting
that release sites, having transmitted on one stimulus occa-
sion, require a waiting period before transmitting again to
similar maximum levels; that is, a period of replenishment.

6. ADDITIONAL VARIANCE COMPONENTS:
MODEL EXTENSION

Recent attention has focused on questions of additional
variability in EPSP outcomes due to so-called intrinsic vari-
ability in release levels of individual synapses (Turner et al.
1995a,b): T describe this concept here and define an elabo-
rated class of models incorporating it. This concept gives
rise to model modifications in which components of the
normal mixture representation have variances that increase
with level, and this leads to considerable complications,
both substantive and technical. The technical complications
have to do with developing appropriate model extensions
and associated MCMC techniques to analyze the resulting
models; some brief development is mentioned here, with
examples. The substantive complication is essentially that
competing models with and without intrinsic variance com-
ponents cannot be readily distinguished on the basis of the
observed EPSP data alone; an observed data configuration
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Figure 14. Summaries of Analyses of the EPSP-B2 Data: Posterior
Intervals for the Ordered p;. At each site index, the left interval corre-
sponds to analysis with h = s = 3 sites; the right interval, to h = s = 4
sites.

might arise from just one or two sites with significant intrin-
sic variance, or it might arise from a greater number of sites
with low or zero intrinsic variance. In such cases, and espe-
cially when inferences about site characteristics are heav-
ily dependent on the number of sites and levels of intrinsic
variance, one is reliant on the opinions of expert neurophys-
iologists to judge between the models. Unfortunately, in its
current state, the field is represented by widely varying ex-
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Figure 15. Summaries of Analyses of the EPSP-B2 Data: Posterior
Intervals for the m; in Order of Increasing u;. At each site index, the left
interval corresponds to analysis with h = s = 3 sites; the right interval,
to h = s = 4 sites.
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pert opinions, from the one extreme of complete disregard
of the notion of intrinsic variability to the other of belief
in high levels of intrinsic variability as the norm. In some
examples, including the EPSP-A dataset of this article, this
issue is relatively benign, as inferences about release levels
and probabilities are relatively insensitive to intrinsic vari-
ances. However, in other cases it is evidently highly rele-
vant. Further collaborative research to refine knowledge of
intrinsic variability effects is part of the current frontiers of
the field. This section gives a short discussion of the notion
and the current approach to modeling intrinsic variability.

Intrinsic variability refers to variation in levels of neu-
rotransmitter release at specific sites. As developed previ-
ously, site j has a fixed release level p;, and although these
levels may differ across sites, they are assumed to be fixed
for the duration of the experiment under the controlled con-
ditions. However, the mechanism of electrochemical trans-
mission suggests that this may be an oversimplification. A
site transmits by releasing a packet of (many) molecules
of a chemical transmitter, and these molecules move across
the synaptic “cleft” to the receiving cell. The induced po-
tential response is proportional to the number of molecules
received. So the assumption of fixed p; implies that (a)
the number of molecules transmitted is constant across oc-
casions, and (b) all ejected molecules are received by the
postsynaptic cell. Each of these is questionable, and the is-
sue has given rise to the notion of intrinsic variance; that
is, variability in the site-specific level of release across oc-
casions. Whatever the actual structure of variability, it is
evidenced in EPSP datasets through mixture components
with higher variance at higher release levels.

0.4-
0.35 -
0.3-
0.25 -

density

signal response level

Figure 16. Summaries of Analyses of the EPSP-B2 Data, From Sep-
arate Analysis With h = s = 2and h = s = 3, in the Model Extension
to Incorporate Site-Specific Measures of Intrinsic Variability in Release
Levels. The figure shows posterior predictive densities from the two anal-
yses together with a histogram of the data. The density curves are from
the model with h = 2 (full line) and h = 3 (dashed line).
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Figure 17. Summaries of Analyses of the EPSP-B2 Data, From Sep-
arate Analysis With h = s = 2 and h = s = 3, in the Model Extension
to Incorporate Site-Specific Measures of Intrinsic Variability in Release
Levels. Displayed are the usual posterior intervals for the 7; factors with
site indices representing increasing levels p;. At each site index, the left
interval corresponds to analysis with h = s = 2 sites; the right interval,
to h = s = 3 sites.

The basic extension of my models to admit the possibility
of intrinsic variability involves remodeling the data y; as
coming from the conditional normal model

s
yi ~ N(yil6s,v) with 0, =m+_ zi;75,7  (6)
=1

where the ;; are new site- and case-specific release levels
and v is the noise variance. Retaining independence across
sites and trials, I assume that the +;; are distributed about an
underlying expected release level y;—the same site-specific
level as before, but now representing underlying average
levels about which releases vary. Then the form of the dis-
tribution of the +y;; about p; represents the intrinsic vari-
ability in induced responses due to variation in amounts of
neurotransmitter released by site j and also due to varia-
tion in the success rate in moving the transmitter across the
synaptic cleft. Various parametric forms might be consid-
ered; my preliminary work to date is based on exploration
of models in which

Pl 75) o< N (i lps, 20310 < vi5 <w)  (7)

for all trials 7 and each site j; here u is the earlier specific
upper bound on release levels. The new parameters 7; > 0
measure intrinsic variability of sites j = 1,...,s; ignoring
the truncation in (7), 7; is an effective constant (though site-
specific) coefficient of variation in release levels about the
underlying ;. This model has been implemented, extend-
ing the prior structure detailed in Section 2 to incorporate
the full set of site- and trial-specific release levels {v;;}
together with the new parameters 7, ..., 7s. Note that as
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my model allows p; = 0 for inactive sites, I use (7) only
for u; > 0; otherwise, u; = 0 implies ;; = 0 for each
1=1,...,n.

The effects of quantal variability are demonstrated by
integrating the data density (6) with respect to (7). This
is complicated due to the truncation to positive values; as
an approximation, for the purposes of illustrating structure
here, assume that this is not binding; that is, 44; and 7; are
such that the mass of the basic normal distribution in (7) lies
well withing the interval (0,u). Then (6) and (7) combine
and marginalize over +;; to give the approximation

s s
Yy ~ N yi|m+ZZ¢ij,U+ZzijTJ-2ﬂ? . 8)

j=1 j=1

The mean here is as in the original formulation, Equation
(1), with active sites contributing the expected release levels
;. But now the variance of y; is not simply the noise vari-
ance v; it is inflated by adding in factors 774 for each of
the active sites. Hence this is the feature relevant to model-
ing increased spread of EPSP data configurations at higher
transmission levels.

It should be clear that this extended model can be man-
aged computationally with direct extensions of the MCMC
algorithms of Section 3 and Appendix B. I now turn to
the full posterior p(u, w,z,, T, m,v,q,a,bly), extending
the original posterior in (5) to include the new quantities
y={vpi=1,...,n55=1,...,s} and 7 = {ry,..., 75}
There are difficulties in the posterior MCMC analysis due to
the complicated form of (7) as a function of y;, and also due
to the truncation of the basic normal model. These issues

levels ordered by levels
-
1

site index

Figure 18. Summaries of Analyses of the EPSP-B2 Data, From Sep-
arate Analysis With h = s = 2and h = s = 3, in the Model Extension
to Incorporate Site-Specific Measures of Intrinsic Variability in Release
Levels. Displayed are the usual posterior intervals for the ordered ;.
The left interval corresponds to analysis with h = s = 2 sites; the right
interval, to h = s = 3 sites.
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destroy part of the nice conditionally conjugate sampling
structure and are currently handled using some direct ana-
lytic approximations and Metropolis—Hasting accept/reject
steps in the extended simulation analysis. (Details are very
briefly reviewed in Appendix C.) It is beyond the scope of
this article to fully develop the technical aspects of this here,
but the discussion would be incomplete without raising the
issue of intrinsic variability, currently in vogue in the field,
and without providing some exploratory data analysis. Ap-
pendix C briefly details the major technical modifications
to the analysis already spelled out in Section 3 and Ap-
pendix B. After further technical refinements and practical
experience, I expect to report full modeling and technical
details elsewhere. Here, for completeness, I briefly summa-
rize results of analyses of some of dataset EPSP-B2 already
discussed.

I take the 7; to be a priori independent 7; ~ U(7;|0,.5)
in the analysis, a maximum 50% level for the intrinsic co-
efficient of variation. Analysis of the EPSP-B2 data with a
maximum of s = 4 active sites, and ¢ > 0 to assess inactive
sites, yields approximate probabilities P(h = 2|y,s =4) =
19, P(h = 3|y,s =4) = .60, and P(h = 4|y,s = 4) = .20.
Compare these to the earlier probabilities in the model with
7; = 0; that analysis led to a 68% probability of four ac-
tive sites and a 32% probability of three active sites. So
allowing intrinsic variability significantly reduces the most
likely number of active sites. Figures 17-20 provide some
summary graphics from two separate analysis with fixed
numbers of sites h = s = 2 and h = s = 3, in a format
similar to Figures 13-16. Note in Figure 17 the close simi-
larity of predictive density functions from the two models.
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Figure 19. Summaries of Analyses of the EPSP-B2 Data, From Sep-
arate Analysis With h = s = 2and h = s = 3, in the Model Extension
to Incorporate Site-Specific Measures of Intrinsic Variability in Release
Levels. Displayed are the usual posterior intervals for the =; in order of
increasing p;. The left interval corresponds to analysis with h = s = 2
sites; the right interval, to h = s = 3 sites.
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Apart from impacting inferences on the number of active
sites, the inferred average release levels yu; are somewhat
lower than in the earlier analysis with no intrinsic variance;
(see Fig. 19). This is to be expected, as intrinsic variability
now accounts for some of the higher observed levels of re-
sponse. Figure 18 displays posterior intervals for the intrin-
sic variance parameters 7;, in the same format as for release
levels and chances in Figures 19 and 20. Note the inference
of comparable levels across the likely two or three active
sites, at appreciable levels of 10%—40% on the coefficient
of variance scale though with high uncertainty.

Clearly, the two competing explanations—increased in-
trinsic variability at higher transmission levels versus more
sites with fixed release levels—are in significant conflict in
this example. The intrinsic variance model supports fewer
sites, attributing the data at higher levels of transmission
to inherently high levels of intrinsic variability. The ear-
lier analysis, constrained to no intrinsic variance, needs
more active sites to adequately cater for the observed data.
Choosing between models involves committing to one of
the extremes—yes or no in favor of intrinsic variability.
Current physiological research, and a keener focus on the
molecular levels of neurotransmission, may shed light on
the issue. We note also there is no imperative to accept
either model on the standard bases of simplicity and par-
simony. Though an intrinsic variance model leads to fewer
active sites, and hence is apparently a simpler description
of the data-generating mechanism, it in no way represents a
simpler model in terms of numbers of parameters and model
complexity, as it requires many more latent ;; parameters
to describe the data.

7. CONCLUDING COMMENTS

Besides the scientifically and statistically live issues aris-
ing in connection with investigations of intrinsic variabil-
ity, several other areas are of current interest and are un-
der initial investigation. As presented, our models make no
explicit allowance for outliers in signal recordings, or for
systematic features such as arise when synaptic tissue ex-
hibits inhibitory as well as excitatory responses to stimuli.
An example of the latter was discussed by West and Turner
(1994), for example. Another related feature of some EPSP
experiments is occasional (though rare) “blocking” of the
responses of all or a subset of transmission sites, leading to
more signal records than expected located around the zero
level. There are obvious ways to extend the current models
to allow for these kinds of events and considerations; one
is to add mixture components explicitly representing such
phenomena. Perhaps the most needed generalization is to
relax the assumption of normally distributed experimental
noise. This is currently in development, using noise mod-
els based on work in Bayesian density estimation following
Escobar and West (1995) and West, Miiller, and Escobar
(1994). (See Cao and West 1996 for related developments.)
" One beginning area of research involves issues of depen-
dence in release characteristics over time and across sites.
For the first issue, synaptic responses in general may be
viewed as a stream where at each site the response may
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depend on previous occurrences. Current analyses assume
independence. The very nature of the paired-pulse poten-
tiation experiments, however, explicitly recognizes depen-
dence effects, in terms of both response/no response and
response levels and the importance of time elapsed between
successive stimuli generating the responses. Statistical de-
velopments of time series issues are of interest here to ex-
plore and, ultimately, model time variation in patterns of
synaptic transmission. Interest in transmission dependen-
cies also extends across sites (i.e., in possible “connections”
between sites that may have physiological interpretation
and importance), although serious inroads into study of this
issue is some way in the future.

It is apparent that the technical aspects of simulation
based analysis in the novel mixture models here bear further
study, from a practical perspective. Investigating variations
on the basic Gibbs sampling schemes that enhance and im-
prove convergence characteristics is certainly desirable. It is
possible that hybrid schemes based in part on the use of aux-
iliary variables (see, e.g., Besag and Green 1993) will prove
useful here; the need for improved computational tools will
be more strongly felt in more complex models incorpo-
rating nonnormal noise components. That said, the current
approach described and illustrated here provides a useful
basis for exploring and assessing EPSP data in attempts to
more directly evaluate the structure and stochastic charac-
teristics of synaptic transmission as it is currently viewed
in the neurophysiological community. Current work on the
applications side focuses on refining this basic framework
and in exploring ranges of EPSP datasets to isolate and
summarize the diversity of observed response mechanisms
in mammalian central nervous systems.

APPENDIX A: COMPONENT
PRIOR DISTRIBUTIONS

The Dirichlet structure of the component prior distribution F'(-)
in the prior modeling for nonzero site levels p; in Section 2.2.2
is detailed here. Write f(-) for the density of F'(-). Recall that
for some probability g, the p; are conditionally independent and
drawn from

(131 Fyq) ~ gbo(uy) + (1 — q) f (15)

for j = 1,...,s. Now F(-) is assigned a Dirichlet process prior
with base measure given by aU (u;]0,u) for some precision a > 0
and the specified range v > 0. Marginalizing over F', the full joint
prior for all s elements of u is now implicitly defined by

pulasc) = [ plulF0)aP(Fl0)
-/ {prF,q)} dP(Fla)

- / {ano () + (1 - q)f(uj)} dP(Fla).

This is a rather complicated expression whose structure is most
easily, and usefully, understood by exploring the corresponding
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conditional priors. For each j =1,...,s,

p(slbsy q,0) = / P(5\F, iy @) dP(Fla, iy

/ p(u3|F, g) dP(Fla, py)

g0 (ki) + (1 — Q) E(dF (1) a, p—j)-

Under the Dirichlet prior, the function E(dF(u;)|a, pu—j) is triv-
ially deduced; write h; for the number of nonzero elements of
p—; and N; for the corresponding set of indices, N; = {i|u: >
0,i=1,...,s;1 # j}. Then, using results of Ferguson (1973) or
West et al. (1994) leads to

E(dF(u5)la, po—5) = 50 (510, u) + (1 = 7)h7" > 64, (s),
‘iENj

where r; = a/(a + h;). This yields the full joint prior p(u|q, a)
defined via the set of conditionals displayed in Equation (3) of the
text.

APPENDIX B: STRUCTURE OF
CONDITIONAL POSTERIORS

More detail on the conditional posterior distributions underlying
the MCMC sampling algorithm of Section 3 is provided here. Each
of the seven conditional distributions is detailed, with comments
about sampling at each step in the MCMC iterations.

B.1

For each j, there are the conditional prior (3) for 1 and the
associated conditional likelihood function

Conditional Posteriors for Site Levels u

n
p(ylu,z,m,v) = [ Nwilm + zip, v).

i=1
Write M; = Z?:l Zij. Now M; =0 iff, zij =0 for all <,
so that the conditioning indicator vector z; corresponds to no
transmissions at all from the synaptic site labelled j. In this
case p(y|u,z, m,v) does not depend on p;, and hence the con-
ditional posterior for p; collapses to the prior (3). Otherwise,
site j is identified as transmitting for at least some of the sig-
nal observations, and hence M; > 0 and the likelihood re-
duces to a function of u; proportional to the normal density
N(pjlm;,v/M;), where m; = M; ' 3" | zije,; based on “resid-
uals” e;; def i —m — Z;u# zirpr fori=1,...,m.

Then, based on the conditional prior (3), it is deduced (for this

case of M; > 0) that

p(iu'J lp’—j) z, m,v,q,a, Y)
o ajodo (us) + @is9s(3) + Y @i (s)
i€N;
with the following components:
* gjo = gN(0lm;,v/Mj)
* g = (1—qgrjci/u with ¢; = &((u — my)\/M;) —
®(—m,+/Mj), and where ®( - ) is the standard normal cdf
* gji = (1= q)(L — r5)h; ' N(ui|my;,v/M;) for i € N;
o gi(uy) = cj_lN(uj|mj,v/Mj)I(0 < pj < u), the density
of the normal distribution truncated to 0 < p; < u.

At each step of the MCMC iterations, sequence through j =
1,...,s, at each step generating a new value of p; given the latest
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sampled values of p_, and all other conditioning quantities. For
each j, this involves computing the 2 + h; positive constants g;s,
(¢ = 0,7;i € Nj), then making a single multinomial draw with
chances proportional to these g;; to identify the selected mixture
component. If ¢ = 0 is selected, then p; = 0;if ¢ > 0 and ¢ # j
is selected, then p; = p;; otherwise, ¢ = j and p; is drawn from
9,(+), simply the N(u;|m;,v/M;) truncated to (0,u). Sampling
efficiency is improved using variations on this basic routine involv-
ing configuration sampling, as introduced by MacEachern (1994)
and developed by West et al. (1994).

B.2 Conditional Posteriors for Site Release
Probabilities =

As a function of any single 7}, the posterior (5) trivially implies
that
p(mj|m—5,2b) o (1= my)" ™" p(ms |, b),
where ¢; = Y " | zi,. Under the prior (4), this becomes the mix-
ture

s
p(milm—5,2,b) o< s;,Be(mslt; +1,n—t;+ 1)+ Y s5ibr,(m5),
i=1,i%j]
where Be(:|-, -) represents the beta density and the s;; are positive
constants given by s;; = wt;!(n —¢;)!/(n + 1)! and s;; = (1 —
w)m;? (1 — ;)" "% /(s — 1) for each i # j.

At each step on the MCMC iterations, sequence through j =
1,...,s, at each step generating a new value of 7; given the
latest sampled values of w_; and all other conditioning quanti-
ties. For each j, this involves computing the s positive constants
sji, (1 =1,...,s), then making a single multinomial draw with
chances proportional to these s;; to identify the selected mixture
component. If 7 5 j is selected, then 7; = 7;; otherwise, ¢ = j and
m; is drawn from the beta distribution Be(w;|t; + 1,n — t; + 1).
Here again, configuration sampling improves efficiency.

B.3 Conditional Posteriors for Indicators z

As a function of the 2° vectors z;, (5) simplifies as H?=1 (2|1,
™, m, v, ¥i), where

p(zi|p, ™, M, 0, yi) o< p(2i|m)p(Yi |1, 2i, m, V)

s
o {Hw?”(l — )i }N(yi|m+z;u, v).
j=1

These 2° unnormalized probabilities are easily computed to pro-
vide a conditional multinomial posterior for the binary vector z;,
and this is easily sampled. A complete draw of a new value for the
full vector z simply involves running through independent simu-
lations for each i =1,...,n.

B.4 Conditional Posterior for Systematic Bias m

The conditional likelihood function in m is a normal form, giv-
ing p(m|s, 7,v,y) o< p(mlv) exp(~ Y1, (e — m)?/(20)) based
on residuals e; = y; — z;u; this reduces to a density proportional
to p(m|v) N (m|e, v/n), which is normal as p(m|v) is normal. This
posterior is trivially sampled.

B.5 Conditional Posterior for Noise Variance v

The conditional likelihood function in v is a standard in-
verse gamma form, resulting in the posterior p(v|u,z,m,y)
p(v|m)v™"/? exp(—S/(2v)), where S = S (yi — m — zjp)®
for each 7. Under the inverse gamma prior p(v|m) from the noise
data analysis, this conditional posterior is also inverse gamma, and
so is easily sampled.
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B.6 Conditional Posterior for Hyperparameter g

Knowledge of p implies knowledge of h < s, the number of
nonzero elements in p, and a binomial likelihood function for g.
Under the specific beta prior ¢ ~ Be(g|s — 1,1), the resulting
posterior is (g|h) ~ Be(g|2s — h + 1,h + 1). Under an alterna-
tive uniform prior, this would change to (g|h) ~ Be(g|s — h + 1,
h + 1). Other beta priors yield appropriate beta posteriors.

B.7 Conditional Posterior for Hyperparameter a

The treatment here follows West (1992) and Escobar and West
(1995). Assume a specified gamma prior G(a|ao,a1) with density
p(a) o a® e~ for a > 0. Data augmentation ideas show that
the relevant conditional posterior for a given p (and everything
else) depends only on distinct, nonzero values among the elements
of . So for any u, write h < s for the number of nonzero values
and h* < h for the number of distinct nonzero values. Then the
required conditional density p(a|u) is the margin of a joint density
p(a, z|p) with the following conditionals:

e given z in (0, 1),
(alz, p) ~ p=G(alao + h*, a1 —log(z))
+ (1 = pg)Glalag + h* — 1,a1 — log(z))

where pz /(1 — pz) = (a0 + B* — 1)/{h(a1 — log(z))}
* given a > 0, (z|a, ) ~ Be(z|a + 1, h).

Although the corresponding density p(a|p) is not directly man-
ageable, the expression through conditionals is natural in the con-
text of iterative posterior simulation analyses, as described in the
aforementioned references. The parameter space is simply aug-
mented with the latent variable z introduced to determine a joint
posterior p(a,z|p) with manageable conditionals. Write a_ for
the value of a available from the latest iteration, so that the cur-
rent values of h and h* have been generated based on that value
a—. To sample a new value of a at the current iteration, generate a
value of z from the beta distribution p(z|a—, p) and then sample
from the gamma mixture p(alz, p).

B.8 Conditional Posterior for Hyperparameter b

This is treated essentially as a. Assume a specified gamma prior
b ~ G(b|bo,b1). Given a vector 7, write s* < s for the number
of distinct values (all are nonzero under the assumed prior). Then
values of b are iteratively sampled in a fashion similar to a, now
based on linked conditional distributions as follows: For some w
in (0, 1), the required conditional density p(b|=) is the margin of
a joint density p(b, w|m) with the following conditionals:

* given w,
(blw, ) ~ pwG(blbo + s, b1 — log(w))
+ (1 = pw)G(blby + s — 1,b1 — log(w))
where pu /(1 — pw) = (bo + 8" —1)/{s(b1 — log(w))}
e given b > 0, (w|b, w) ~ Be(w|b+ 1, s).

The sampling scheme generates a new value of b by augment-
ing the parameter space with w, in a way directly analogous to
sampling a.

APPENDIX C: CONDITIONAL POSTERIORS WITH
THE INTRINSIC VARIANCE MODIFICATION

This appendix briefly details the posterior structure and new
components of the MCMC analysis required to incorporate the
new sets of parameters - and 7 in the model extension for intrinsic
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variability of Section 6. With reference to the original framework
in Section 3, detailed in Appendix B, there are several changes to
the simulation of conditional posteriors, and two additional steps.
The set of components labelled 1-8 in Appendix B are modified
and extended as follows.

CA

The p; are sampled from conditional posteriors that are
marginalized over v. For each site index j in turn, there are the
usual conditional prior 3 for p; and the associated conditional
likelihood functions from 8; the latter are now more complicated
as functions of p; and result in posteriors that are not directly
simulated. Instead, analytic normal approximations are used as
Metropolis—Hasting (M—H) proposal distributions and an M-H in-
dependence chain step is embedded within the overall MCMC
loop. Write m;; for the “current” value of y; in the iterations, and
fix the variances of 8 by plugging in m, for yu;, for each j. This
leads to approximate likelihood components that are normal, as in
the original scheme of Appendix B, though now with differing but
known variances. Step 1 of Appendix B can now be completed as
written to obtain a candidate draw for p;, and the associated M—H
accept/reject ratio is easily computed and used to accept or reject
the candidate value. Sequencing through j = 1,...,k using this
strategy produces a new vector u.

Conditional Posteriors for Site Levels u

C.2 Conditional Posteriors for v and =

The new MCMC steps draw release levels +;; and then intrinsic
coefficients of variance 7; from appropriate conditional posteriors.
First, we sample the elements of +. For fixed ¢ and j, note that,
conditional on all other parameters and the observed data, the con-
ditional posterior for the individual release level ;5 is proportional
to the product of Steps 6 and 7. If z;; = 0, then this reduces to
the prior 7. Otherwise, 6 and 7 trivially combine to give a nor-
mal posterior multiplied by the truncation indicator in 7. Either
way, <y;; is trivially sampled from the resulting truncated normal
distribution.

Second, we sample the elements of 7. Suppose that the prior has
the 7, independent with common density g(7;) (a uniform prior
in the current implementation). Then, conditional on ~ and u, the
prior combines with the conditional likelihood components arising
from 7 to yield independent conditional posteriors for the ;. In
case p; = 0, 7 is vacuous and the posterior for 7; is simply the
prior, so easily sampled. Otherwise,

P75l 1) o g(7)e(r;) ™" exp(=G;/275) /77",

where G; = 3" (vi;/u; — 1)* and c(7;) is the probability on
(0,w) under the N(-|u;,7; pu?) distribution. This has the form of
an inverse gamma density multiplied by g(7;)c(;)~", suggesting
a M—H/independence chain step for sampling. Draw from the in-
verse gamma so determined as an M-H proposal density, and then
accept/reject according to the resulting, and easily computed, M—
H ratio.

C.3 Conditional Posteriors for Site Release
Probabilities =«

This follows the original model formulation in Appendix B.
Steps 3-5 inclusive in Appendix B remain essentially the same,
but with levels +y;; replacing the y; in the means of the conditional
normal distributions for the y; throughout. The remaining steps 6—
8 are unchanged.

[Received September 1994. Revised August 1996.]
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