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SUMMARY
For routine implementation with complicated likelihood functions, statistical procedures
based on posterior distributions, or integrated likelihoods, require an efficient approach
to numerical integration. In this paper we shall outline a numerical integration method
using Gaussian quadrature which leads to efficient calculation of posterior densities for
a rather wide range of problems. Several illustrative examples are provided, including a
re-analysis of the Stanford heart transplant data. Among other things, these examples
reveal that inferences based upon integrated likelihoods may differ substantially from
those based on maximized likelihoods and the standard normal form of approximation.
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1. INTRODUCTION

THE implementation of Bayesian inference procedures can be made to appear deceptively
simple. Given a likelihood function /(x; 8) and prior density p(8), we simply apply Bayes’
theorem to obtain the joint posterior density for the parameter vector 0,

P L)
P Jiix: 0)p(®)d0’
If we are interested in the marginal density of 0,, where I =(1, ..., k) are the subscripts of the

components of interest, we then simply integrate over 0;., where I’ is the complement of I in
., k), to obtain

)

p(6;[x) = Jp(ﬂ |x)d0,. @

In both (1) and (2) the integrations are to be understood as having the appropriate dimensions
and ranges.

In cases where I(x; 0) and p(@) belong to the exponential family and the corresponding
conjugate family, respectively, it is well known that the integrations required in (1) and (2) can
be performed analytically, leading to simple, tractable forms of analysis (see, for example,
DeGroot, 1970). In general, however, the forms of likelihoods and/or prior densities do not
permit such a tractable analysis and the required integrations must either be performed
numerically, or analytic approximations found.

Reilly (1976) presented a straightforward approach to this integration problem, evaluating
the function at a large number of grid points, and replacing the integrations by appropriate
summations in order to find the normalizing constants (i.e. the reciprocal of the denominator
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of (1)) and marginal densities. While this approach might be adequate for relatively
straightforward likelihoods (of the type illustrated in Reilly’s paper) it is easy to find important
classes of problems for which large-scale function evaluation of this kind would be
prohibitively expensive in computer time. Examples are given in Section 3 involving
complications due to censoring and high posterior correlations among some parameters.

In Section 2 we outline an approach to numerical integration which has proved highly
efficient and successful for analysing a number of problems. Various aspects of this approach
will be illustrated in Section 3 by re-analysing several data sets which have already appeared in
the literature—including the Stanford heart transplant data (see, for example, Turnbull et al.,
1974). These re-analyses serve to underline the message that approximate analyses based on
maximum likelihood estimates and ranges of uncertainty obtained by appealing to “asymp-
totic” normality can be rather misleading—as judged in relation to exactly (i.e. efficiently
numerically) calculated posterior densities based on “non-informative” priors. The posterior
densities are often not normal in appearance and exact posterior correlations and variances are
often substantially different from the values obtained using the matrix of second-derivatives of
the log-likelihood.

In Section 4 we give a short summary of the kinds of problems that may be analysed within
the Bayesian framework using this numerical integration approach. Some general remarks
follow in Section 5.

2. EFFICIENT COMPUTATION OF POSTERIOR DISTRIBUTIONS
2.1. Forms of Integral Required
For given likelihood and prior, I(x; 8) and p(6), let us define the operator S; such that

SHq(9)) = J q(8) [(x; 0) p(8)d6,., ©)

writing S in place of S, if I' = (1,..., k), and leaving the dimension of integration implicitly
defined and the range understood to be the full parameter space. Then all the integrals
required for calculating and summarizing (1) and (2) are special cases of (3) for particular
choices of I and ¢(0).

For example, S(1) gives the denominator of (1) and hence the normalizing constant of the
joint posterior density. Moreover, if I(x; 8) is taken to be the density of the full sampling
dlstrlbutlon S(x|0), then S(1) gives f(x), the marginal distribution of x. By taking () equal to
0, 0, 0,0;, respectively, and forming the obvious expressions involving S(1), S(Hl) S(0;) and
S(0; 0,) posterior means, variances and covariances are easily obtained. If g(@) is taken to be
S(y10), the density of the sampling distribution of future data y, then S(f(y|0))/S(1) is the
predictive density for y given x.

2.2. Basic Assumptions and Method of Integration

A very wide range of problems are such that I(x; 0), p(6) satisfy regularity conditions which
ensure the asymptotic posterior normality of p(@|x). From this and other considerations,
particularly if the components of @ are represented sensibly (for example, possibly using log (¢)
in place of 0), it is reasonable to suppose that, at least for moderate samples, the forms p(0|x)
may be adequately approximated by the product of a k-dimensional multivariate normal
probability density and a polynomial in (04, ..., 8,).

Now it is well known that univariate integrals of the form

f T et oy dr @

— o0
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may be approximated with a Gaussian-type formula

> /() (5)
where
2" tpln
LN Stz (6)
n [Hn l(tl)]
and t; is the ith zero of the Hermite polynomial H,(t); see, for example, Davis and Rabinowitz
(1967). Moreover, the remainder function has the form

w; =

nln
R, = \/ 1’ (), (7)
for some &, so that if f(¢) is actually a polynomlal of degree 2n— 1, the remainder will be zero

and the approximation exact.
If h(z) is a suitably regular function and

4(6) = (o) (2n62)-%exp{—§(t‘——“)2},

simple manipulation shows that

f : g(t)dt=r inh(w\/zat)e-t’dt, @®)

— o0 — 00

which has the form (4). Utilizing the Gauss—Hermite formula, we therefore obtain

J_ g(t)dt ~ \/ o; h(u+./20t;)

= _Zl V20 exp (12 w; g(u++/20t))

= Zl m; g(z), &)
where
m; = w;exp(t?) /20, z; = pu++/20t; (10)

Tables of t;, w; and w;exp (t?) are available for n = 1(1)20 (Salzer, et al., 1952) and the error
term will be small if h(z) is (approximately) a polynomial.

Letting t = 6, we may apply (9) to integrals of the form (3) with k = 1 and ¢(6) = 1 provided
that we can find a normal density which, when multiplied by a polynomial in 6, gives an
adequate approximation to p(f|x), or, equivalently, to I(x; 6) p(f), as in (3). One possible
ch01ce is to use a normal density with the posterior mean and variance of 6 substituted for u
and o2, respectively. Approx1mate values for these posterior moments may be available by
max1mum likelihood, prior knowledge of the situation, or even a crude “informed guess’ based
on a few evaluations of the likelihood function.

Equation (9) may also be applied to (3) with g(6) chosen to give the posterior mean or
variance, since such choices merely multiply the integrand by a polynomial in 6 of degree at
most two. For an n-point rule, we may expect, from (7), that this application of (9) will be
satisfactory if p(f | x) is well approximated by the product of a normal density and a polynomial
in 0 of degree at most 2n—3. We use an iterative method in which the approximations to the
posterior mean and variance found in this way on any particular iteration are used to
construct the grid (z;) and weights (m,) for the next. This may be applied initially to quite small
grid sizes (down to n = 3) and then the grid sizes gradually increased until satisfactory
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convergence is observed, in the sense that stable answers are obtained at each grid size,
together with adequate agreement between answers derived from successive grids. A selection
of such iterative results is given and discussed for a three-parameter problem in Section 3.3.

For problems with more than one parameter, we use a cartesian product rule based on (9),
which may be written in the form

j fg(tl, ot dtydt >y mi) Y mE Y mlD) 9@, .. 2D), (11)
ik iz i1

where m{?, z{ are found using (10), with the marginal posterior mean and variance of 6;
substituted for u and ¢2. One method of deriving this rule is to consider the use of (9) for
obtaining values of a marginal density in a two-parameter problem. Point values of such a
density are defined by univariate integrals of the form

p(621x) = Jp(Bl, 6,1x)do,,

which may be evaluated by the method described for the one-parameter case. However, the
values of u, o needed for (10) correspond to conditional posterior moments of #, and so require
separate iterative determinations for each point value 6,. The more tractable form appearing
in (11) is obtained if these conditional moments are replaced by marginal moments.In a similar
way, the marginal density of 6, may be integrated using (9) as before (repeated applications of
this leading to the complete rule defined by (11)). Clearly, the order of the weighted
summations in (11) is unimportant and so all the marginal densities for a k-parameter problem
are available as marginal weighted sums.

The justification of the use of marginal values for u, ¢ as described above involves
additional assumptions of posterior independence and homoscedasticity, but, in many
problems, there are high posterior correlations between some elements of 8. We overcome this
difficulty by transforming the component parameters in @ to a new orthogonal set of
parameters. For example, for the three parameter case, we may form

0,1 = 017
05 = By + 065,
03 =a,0)+0,05+0,,

where o, a, and f are chosen to make 6, orthogonal to 6, and 63 orthogonal to the plane
0, 0,. These transformations have unit Jacobian and are completely determined by the
posterior covariance matrix (so they can be recalculated at each stage of the iterative
determination of the mean vector and covariance matrix).

We note that in the approach given above 6, is not transformed and so its marginal
distribution is readily available as before. In a similar way, marginals for 6, and 6; may be
obtained by omitting all or part of the transformation after a sufficient number of iterations for
convergent values of the mean vector and covariance matrix to have been obtained.
Alternatively, the components of 8 could be reordered so as to permit different sets of
parameter transformations and hence different components appearing as the untransformed
0,. Comparative results using both these techniques are mentioned in the example of Section

The use of transformations of the parameter space as described above may be viewed as an
attempt to find a parameter set having posterior spherical symmetry. If such a set could be
found, it might then be argued that more economical rules which made better use of this
condition could be used (see, for example, Stroud, 1971, Section 8.9). We have considered such
rules for the initial stages of iterative techniques, but there are two serious disadvantages in
their general use.
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The first problem is that no marginal density values would be readily available. Although
we have ourselves, in Section 3, summarized many of our results simply in terms of posterior
moments, this is done merely for comparison with currently available results. This practice is
not a real alternative to the full presentation of marginal or joint posterior densities.

The second problem relating to the use of spherical rules is that they depend on the
corresponding approximation of “multivariate normal density multiplied by a polynomial in
0” being reasonable for all points in the parameter space. The success of the method presented
here depends only on the assumption of the adequacy of the approximation for the conditional
distribution in a specific set of directions in the parameter space. This suggests that certain
choices of parameter orderings (and corresponding transformations) may be better than
others. Such an effect has been observed and is discussed for the example of Section 3.3.

Part of the efficiency of our method stems from the fact that the same grid and weights may
be used for approximating integrals of the form (3) for a wide choice of functions ¢(8). The
polynomial choices required for the mean vector and covariance matrix have already been
discussed and are used at each stage of the iteration. In the case of predictive distributions,
q(0) = f(y|0), the typical form of f(y|8)is such that its product with the likelihood /(x; ) is the
likelihood for the sample (x, y) and hence behaves like I(x; 0) in situations where the dimension
of y is much less than that of x (often, of course, y is simply one-dimensional).

This integration method has now been tested on a wide range of both real and artificial
problems, a selection of which are described in Section 3. In particular, we have compared our
approach with other methods currently available. Experience so far supports the view that the
method is generally “fail-safe”, in the sense that if the assumptions underlying the approach are
not reasonably satisfied, then convergent results cannot be found. This is generally not the
case, for example, with approximations based on maximum likelihood methods for which
some sort of numerical answer is always available, irrespective of the adequacy of the
“asymptotic normality” assumption.

In some problems, it is very advantageous to use functional transformations (e.g.
logarithmic) of some components of the parameter vector in order to enhance the spherical
normal approximation: for example, it is usually most sensible to work with log (o) instead of
o. In the examples presented here, however, this has not always been done, in order to facilitate
comparison with previous analyses of the data sets.

Techniques are also incorporated into the method to prevent real arithmetic overflow
(since the integral (3) with g(0) = 1 is generally very small) and for the accurate summation of
expressions such as (11) (since with some choices of g(@) the terms in this sum may be of
different magnitudes, but none can be assumed to make an insignificant contribution). These
techniques will not be discussed here. The graphs of marginal posterior densities presented in
this report have been drawn using natural cubic splines (see, for example, Ahlberg et al., 1967).

3. SOME ILLUSTRATIVE EXAMPLES
3.1. Timing Comparison with Reilly’s Method

Reilly (1976) illustrated his method with a small data set of six (x;, y;) pairs from the model
logy; = log(a+ Bx;)+¢;, with g~ N(0, ¢%). Taking ¢ to be known, so that @ = («, ), Reilly
produced joint posterior contours for («, §), marginal densities for « and f, and for «/f, based
on function evaluations using a 101 x 101 grid. The site for this grid was found by
manipulating an initial grid of 11 x 11 points. Although this problem does not seem ideal as a
possible test case for our approach (since the sample is rather small), results corresponding to
and agreeing exactly (to within the limits of graphical presentation) with those given by Reilly
have been obtained for this two-parameter problem using our method. A deliberately poor
starting point was chosen and two initial iterations on 5 x 5 grids, followed by four 7 x 7 grids,
produced the required convergence. A second run was needed with reparametrization to
obtain the marginal distribution of «/f.
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Using the 101 x 101 grid, a direct timing comparison with Reilly’s method was not possible
on the computer used in our study. However, a succession of runs using a range of smaller grid
sizes were used to obtain an estimate of the time required to compute the function evaluations
for a grid of 101 x 101 points. Using this deliberately conservative estimate of the time for
Reilly’s method, we found a time ratio of about 4: 1'in favour of our approach. In the three-
parameter problem, the time ratio in favour of our method was found to be in excess of 25: 1
when all bivariate and univariate marginal posterior densities were produced.

In addition to these favourable time comparisons, which, of course, become even more
extreme as the dimensions of the problem increase, we note also the very minimal storage
requirement of our method as compared with one which relies on large grids of function
evaluations. (A grid of 1012 single precision real values requires over four mega-bytes of core
storage!)

3.2. Re-analysis of Some Leukaemia Data

The data in Table 1 (Gehan, 1965) are the remission times (in weeks) of two groups of
leukaemia patients, censored observations being indicated by “1”.

TABLE 1
Remission times for leukaemia patients

Group 1 1 1 2 2 3 4 4 5 5 8 8 8 8 11 11
12 12 15 17 22 23

Group 2 6 6 6 7 10 13 16 22 23
6t 9t 10t 11f 17f  19%  20f 25t 32% 32 34t  35%

These data have been re-examined recently by Aitkin and Clayton (1980) using GLIM and
the EM algorithm to analyse a two-sample Weibull model with a covariate (group
membership) coded to be z; =3 in the first group and z, = —% in the second group. The
survival times can then be regarded as a single sample of n + m values, the last m being censored
(n =30, m = 12). Given a survival time density function f(t) and probability of survival

R(t) = [° f(u)du, the likelihood function is defined by

n+m

L= 101 T [ReD.

The explanatory variable z is incorporated through a proportional hazards model in which
the hazard function h(t) = f(t)/R(¢) is assumed to be of the form

h(t;)) = A(t;) exp (Bo+ By z),
where, with A(f) = at*~ 1, it can be shown that

f(t) = ati " exp {fo+ By z;—tieforPr=}
(which is the standard Weibull density if f,+ 8, z; = 0).
The logarithm of the likelihood function may be written as

n+m n

InL=nlnoa+ Y (o;lnp—p)— Y Int,
i1 =1

where Iny; = alnt;+f,+p,z; and w; is an indicator variable taking the value 1 for
uncensored times and 0 for censored times.

An improper locally uniform prior, p(f,, f;, ®) = constant, was used, and Table 2 gives the
posterior means, standard errors and correlations for @ = (B,, f;,«), obtained with our
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method, based mainly on a 7 x 7 x 7 grid which worked with f,, , and, as a third parameter, a
linear combination of all three parameters chosen to avoid problems arising from the high
correlation between f, and o. The table also summarizes the results obtained by Aitkin and
Clayton using GLIM and maximum likelihood (and we are very grateful to them for supplying
details not given in their paper).

There is considerable agreement in this case between the numerically “exact” posterior
means and standard errors (i.e. those based on the efficient numerical procedure) and those
based (equivalently) on the standard posterior normal approximation. In fact, direct
inspection of the log-likelihood contours reveals that they are quite smoothly elliptical over a
large range, despite the high correlation between f, and «.

3.3. Re-analysis of the Stanford Heart Transplant Data

Data relating to the Stanford heart transplant programme have been discussed and
analysed using a variety of methods by Turnbull et al. (1974). One of the models proposed
(referred to in Section 4.3 of their paper as the Pareto model) assumes that individual patients
in the non-transplant group have exponential lifetime distributions with parameters ¢ drawn
from a gamma population density A7 ¢* ~! e “**/T'(p), and that patients in the transplant group
have similar distributions, but with t¢ in place of ¢. With 8 = (z, 4, p) the likelihood is then
given by

n pll’ N /1 P m Tp /11’ M /1 14
il=_[1 (l+xi)"+1 i=l,,_[+1</1+x,~> jl:[1 (l+yj+tzj)"“ j:l,:[+1</1+yj+tzj> ’
where the x; are the survival times in days of the N = 30 non-transplant patients, n = 26 of
whom died, and y;, z; are the times to transplant and survival times, respectively, for the
M = 52 transplant patients, m = 34 of whom died.

Although it is actually possible in this case to integrate analytically over the p parameter,
we shall illustrate our numerical procedure for the full three-parameter likelihood. Using an
improper uniform prior for 0, we have calculated the posterior means, standard errors and
correlations for 7, A and p. These are shown in Table 3, together with the corresponding
maximum likelihood estimates and “asymptotic” correlation matrix derived from covariance
estimates given by Turnbull et al. It is clear that there are significant differences between the
two sets of results and we shall consider the reason for this in more detail. This example also
provides a good illustration of the comments made in Section 2 regarding the performance and
operation of the iterative scheme.

In Fig. 1, marginal posterior densities of 7, A and p are shown (constructed using natural
cubic spline curves fitted through the final 9 and 10 points for the parameter in each case)
together with normal densities based on the ML estimates. Again, there is considerable
discrepancy between the corresponding pairs of densities, particularly for 1. We see that all the
exact marginal densities are markedly non-normal and in particular show positive skewness.

TABLE 2
Summary of inferences for @ = (B,, 8, )

Estimates and

standard errors Correlations
Bo By a Bo B1
Bayes —4-05 177 1-39 B —0-38
(0-61) (0-42) (0-20) o —094 026
ML —393 173 137 B, —0-38

(0-66) (0-41) 0:29) o —094 0-26
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TABLE 3
Comparison of Bayes and ML inferences for (z, 4, p)

Estimates and

standard errors Correlations
T A p T A

Bayes 1-04 325 0-50 A —008

(0-47) (16-2) (0-14) p —044 078
ML 0-81 22:0 0-44 A —0-46

(0-34) (6:0) (1-10) p —046 0-70

i~
Asymp.
Exact
T T T T r——y T

Asymp.
Exact
- . ———> A
0 20 40 60 80 100
A
Asymp.
Exact
T T - T e D

0-0 0-2 0-4 06 0-8 10

F1G. 1. Exact and “asymptotic” posterior densities for the Stanford data.
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Such a degree of non-normality was anticipated after a run on a series of 5 x 5 x 5 grids failed
to show satisfactory convergence.

For larger grid sizes, satisfactory convergence is observed and a summary of convergent
results for a series of grid sizes is shown in Table 4. In each case iterations were continued until
there was seven-digit agreement in the successive values for the logarithm of the reciprocal of
the normalizing constant, i.e. f(x). Because of the relatively high posterior correlations in this
problem, a full orthogonal transformation of the parameter space was used. Points for the
graphs were mainly obtained by changing the order in which the parameters were presented
to the program (as shown in Table 4). However, in each case one set of points was obtained
(with the chosen parameter in the 6, or 05 position) by omitting part of the transformation.
There was good agreement between the density points obtained using the two approaches.

TABLE 4
Convergent results at a series of grid sizes for different parameter orderings

T A p
Grid Mean s.d. Mean s.d. Mean s.d. Correlations Norm. const.
Sizes (Taken as 6,) (Taken as 0,) (Taken as 03) 7.4 T.p A.p 10154 x f(x)
83 1-0675 04502  33-15 1528 04960 01342 —-0070 —0429 0751 37447
93 1-0127 04875 3170 16:55 04963 01480 —0078 —0444 0779 42499
103 1:0577 04707 3293 1600 04971 01420 —0-072 —0-433 0761 3-8472
(Taken as 03) (Taken as 0,) (Taken as 6,)
83 1:0297 04545 3328 1540 05036 01382 —0-074 —0447 0752 39197
93 1-0414 04743 3159 1648 04892 01437 —0082 —0424 0786 4-1748
103 1:0379 04706 3297 1604 04999 01411 —0081 —0437 0769 39724
(Taken as 03) (Taken as 6,) (Taken as 6,)
83 1-0273 04564  32:67 1569 04998 01370 —0073 —0437 0766 4-0035
93 1-0378 04698  32:60 1585 04971 01394 —0076 —0437 0766 4-0407
103 10375 04732 3247 1617 04967 01411 —0084 —0437 0775 4-0590

In Table 4 we note that the choice (p, 4, 7) for the parameter order performs rather better
from the convergence point of view (in that stable values from successive grids show better
agreement) than the choice (4, p, t), and that both of these perform better than the basic order
(t, 4, p). The results from the choice (p, 4,7) have been reported in Table 3. Since different
choices of parameter order correspond to different transformations of the parameter space this
observation is readily explained by supposing that the transformed parameters obtained with
the order (p, 4, 7) have sets of conditional distribution which are more nearly normal than those
for the other choices. Marginal density plots for these transformed parameters were found to
give a visual confirmation of this which suggests that, since some “directions” are “better” than
others, the use of methods which depend on full spherical symmetry may not be useful for
problems such as this (¢f. our earlier remarks about spherical rules in Section 2.2).

As can be seen from Table 4, the convergence for the posterior quantities summarized in
Table 3 is generally rather poor, hence more results than are generally required are presented
as evidence for these values. This situation could have been improved by considering
additional transformations of the parameter space (for example replacing 4 with log(4)).
However, this would have been at the expense of straightforward comparability with the
results of Turnbull et al. Detailed studies have shown that the marginal density values show
much better agreement as grid size is varied and, in any case, are more useful as a basis for
inference than posterior means and standard errors in the case of non-normal densities such as
these.
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On the basis of the ML estimate of 7, T = 0-81 with standard error 0-34, Turnbull et al.
conclude that, for the transplant group, “The results indicate some reduction in hazard (19 per
cent), but... nothing approaching statistical significance”. Examination of the skewed mar-
ginal posterior density for 7 reveals that even this tentative suggestion of a reduction is not
justified. The posterior probabilities for T <1 and 7 > 1 are virtually identical (= %) and there is
no evidence in favour of the former hypothesis.

3.4. Re-analysis of a Regression Problem with Censored Data
Schmee and Hahn (1979) discuss the results of temperature accelerated life tests on
electrical insulation in 40 motorettes. Ten motorettes were tested at each of four temperatures,
the test termination (censoring) time being different at each temperature. The results (in hours)
are given in Table 5.

TABLE 5
Insulation life at various test temperatures

150°C 80641, 80641, 80641, 80641, 8064f, 80641, 80641, 8064f, 80641, 8064,
170°C 1764, 2772, 3444, 3542, 3780, 4860, 5196, 54481,  5448f,  5448f,
190°C 408, 408, 1344, 1344, 1440, 16801, 16801,  1680f, 1680, 1680,
220°C 408 408, 504, 504, 504, 528+, 528%, 528, 528+,  S28%,

The model adopted by Schmee and Hahn assumes that log-failure times are normally
distributed with constant variances and means which are linear in x = 1000/(T+273-2), where
T is the Centigrade temperature. If the means are denoted by f,+ f; x;, the log-likelihood has
the form

4 4 noi
—log (\/(Zn) 0')_2,1”0;' —(20%)" l.zl .ZI(IOg Vij—(Bo+ B xi))2

i=1j=

+ 3 {cilog [1-0( ™ (logd;—(Bo-+ b1 X))},

where at temperature T; there are ny; observed lifetimes y;; and c; items surviving longer than d;
hours.

In this case, we worked with parameter vector 8 = (8, 8;, 6), with the “non-informative”
prior form, p(0) oc ¢!, and crude starting values for the mean vector and covariance matrix
obtained by applying least squares under the assumption that the censored values actually
failed at the censoring time (see Schmee and Hahn for details). This simple preliminary analysis
revealed the possibility of very high posterior correlation between f, and B, and so the
program worked with an “orthogonalized” set of parameters (as discussed in Section 2.2). We
worked directly with g, rather than log(s), in order to facilitate comparison with Schmee and
Hahn’s results.

In the case of f, and f8;, the marginal posterior densities are symmetric and the posterior
means (PM) (E(f,|data) = —6-2, E(B,|data) = 4-4) are similar to the iterative least squares
(ILS) estimates (Schmee and Hahn) and the maximum likelihood (ML) estimates (Aitkin,
1980).

The main interest in this reanalysis of these data lies in the results for ¢. The posterior
density is rather skewed, as shown in Figure 2, and the use of the iterated least squares
procedure is seen to be extremely suspect. The Bayesian analysis reinforces the points made by
Aitkin (1980) concerning the bias problems that arise with ILS and ML estimates of ¢ from
censored data. In addition, of course, such estimates would produce highly misleading
statements of uncertainty for 8, and f, if classical confidence interval procedures were used.



224 APPLIED STATISTICS

ILS ML PM
y 'R I
T 20

¥ al Ll T 1 L ¥
010 020 030 040 050
015 025 035 045 055
FI1G. 2. Posterior density for o, together with ILS, ML and PM estimates.

4. OTHER APPLICATIONS

A library of Fortran subroutines is currently available (on request from the first author) for
the case k = 3. This enables one, for example, to carry out detailed numerical analysis of a
robust Bayesian approach to location-scale problems using any family of sampling distri-
butions defined by a further “shape” parameter, 4, say, so that 8 = (u, log(s), ). We can, for
example, consider the exponential-power family (Box and Tiao, 1973), or the family of ¢-
densities (Relles and Rogers, 1977).

Using the routines for efficient numerical integration in three-dimensions, a number of
problems involving k = 4, or k = 5, parameters can be satisfactorily approached by adopting
suitable discretized ranges for the additional parameters. For example, robust analysis of a
straight line model (E(y) = a+ Bx, V(y) = 6?) can be carried out by assuming the error to
follow one of the families of densities described above, with “shape” parameter 4: we then work
with 0 = («, §, log (o), 2) (so that k = 4) and a suitable discrete range of values for 1. As a further
example, suppose we consider the straight-line model with errors following a normal
ARMA (1, 1) process (with parameters ¢ and ). A satisfactory approximate analysis can then be
made by taking 0 = (o, 5, log (o), ¢, ¥) (so that k = 5) with a suitable discrete grid of values for

(¢, ).

5. GENERAL REMARKS

The numerical approach outlined in this paper is based on the assumption that for
moderate (finite) samples, and under suitable parametrization, a posterior density can be well
approximated by the product of a normal density and a polynomial.

In comparison with standard maximum likelihood methods, perhaps based on the EM
algorithm, the following points should be noted:

(i) complex likelihoods or prior densities are handled routinely by our method;

(i) maximum likelihood variance—covariance estimates (based on the matrix of second
derivatives) are only really sensible if the log-likelihood contours are close to ellipsoidal—a
much more restrictive assumption than ours;

(iii) even when the maximum likelihood approach converges, a rather subjective assess-
ment (perhaps by inspection of log-likelihood plots) has to be made of whether the assumption
of ellipsoidal contours is reasonable or not; with our approach, if the assumptions made are
not reasonable for a particular problem (or parametrization) we learn this directly, since stable
answers within and between successive grids are not obtainable.
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