
Chapter 2Fa
tor analysis

2.1 Introdu
tionMethodologi
al innovations and real-world appli
ations of fa
tor analysis, and latentstru
ture models more generally, have developed rapidly in re
ent years, partly due toin
reased a

ess to appropriate 
omputational tools. In parti
ular, iterative MCMCsimulation methods have very naturally opened up a

ess to fully Bayesian treatmentsof fa
tor analyti
 models, as developed and applied in, for example, Geweke and Zhou(1996), Polasek (1997), Arminger andMuth�en (1998) and, with extensions to dynami
fa
tor 
omponents in �nan
ial time series modelling (Aguilar andWest, 2000; Pitt andShephard, 1999b). The growing range of developments and 
reative appli
ations inin
reasingly 
omplex models, and with larger data sets in higher dimensions, justi�esthe view that 
omputational advan
es have been 
riti
ally enabling; the near futurewill very likely see mu
h broader use of fa
tor analysis in routine applied statisti
alwork.The above studies, and others, explore fully Bayesian inferen
e in latent fa
tormodels in whi
h the number of fa
tors is a modelling 
hoi
e; applied work typi
allystudies sensitivity of predi
tions and variations/ambiguities of interpretations as the3



number of fa
tors is varied as a 
ontrol parameter. Formal inferen
e on the number offa
tors itself has been relatively ignored in the Bayesian literature, though there areranges of standard likelihood and frequentist methods available. Some key additionalreferen
es, Bayesian and non-Bayesian, in
lude (in order of appearan
e) Lawley andMaxwell (1963), Joreskog (1967), Martin and M
Donald (1981), Bartholomew (1981),Press (1982) (
hapter 10), Lee (1981), Akaike (1987), Bartholomew (1987), Press andShigemasu (1989), Press and Shigemasu (1994). The book by Bartholomew (1987)is an ex
ellent overview of the �eld up to about ten years ago.In this 
hapter we formally introdu
e the fa
tor model along with some of its basi
properties. Se
tion 2.2 introdu
es the basi
 notation and the probabilisti
 frameworkin a k-fa
tor model. Se
tions 2.3 and 2.4 dis
uss identi�
ation issues, invarian
e tolinear transformation and the independen
e assumption of 
ommon fa
tors in somedetails. We see, for instan
e, that assuming a nondiagonal 
ovarian
e stru
ture forunobserved 
ommon fa
tor s
ores is irrelevant from an estimation viewpoint. Thein
orporation of prior information is tou
hed in Se
tion 2.5, while posterior analysisthrough Markov 
hain Monte Carlo is introdu
ed in Se
tion 2.6.2.2 Basi
 model formData on m related variables are 
onsidered to arise through random sampling froma zero-mean multivariate normal distribution denoted by N(0;
) where 
 denotesthe m�m non-singular varian
e matrix 1. A random sample of size T is denoted byfyt; t = 1; : : : ; Tg: For any spe
i�ed positive integer k � m; the standard k�fa
tormodel relates ea
h yt to an underlying k�ve
tor of random variables f t; the 
ommonfa
tors, via yt = �f t + �t (2.1)1See Appendix A for the de�nition and some properties of the multivariate normal distribution.4



where� the fa
tors f t are independent with f t � N(0; Ik);� the �t are independent normal m�ve
tors with �t � N(0;�); and� = diag(�21; � � � ; �2m);� �t and f s are independent for all t and s;� � is the m� k fa
tor loadings matrix.Under this model, the varian
e-
ovarian
e stru
ture of the data distribution is 
on-strained; we have 
 = V (ytj
) = V (ytj�;�) given by
 = ��0 +�: (2.2)The model implies that, 
onditional on the 
ommon fa
tors, the observable variablesare un
orrelated: hen
e the 
ommon fa
tors explain all the dependen
e stru
tureamong the m variables. For any elements yit and yjt of yt; we have the 
hara
terisingmoments: var(yitj�;f ;�) = �2i ; 8i;
ov(yit; yjtj�;f ;�) = 0; 8i; j; i 6= j;var(yitj�;�) = kXl=1 �2il + �2i ; 8i;
ov(yit; yjtj�;�) = kXl=1 �il�jl; 8i; j; i 6= j:In pra
ti
al problems, espe
ially with larger values of m; the number of fa
tors kwill often be small relative to m; so that mu
h of the varian
e-
ovarian
e stru
ture isexplained by the 
ommon fa
tors. The uniquenesses, or idiosyn
rati
 varian
es, �2i5



measure the residual variability in ea
h of the data variables on
e that 
ontributedby the fa
tors is a

ounted for.The model (2.1) 
an be written asy = F�0 + � (2.3)where y = (y1; � � � ;yT )0, F = (f1; � � � ;fT )0 and � = (�1; � � � ; �T )0 are matri
es ofdimension (T � m); (T � k) and (T � m); respe
tively. The elements � and F aremutually independent matrix variate normal random variables, as in Dawid (1981),Press (1982) and West and Harrison (1997) 2. The notation, as in Dawid (1981), issimply � � N(0; IT ;�): We then have densitiesp(yjF ;�;�) / j�j�T=2etr(�0:5��1��0) (2.4)and, marginalising over F ;p(yj�;�) / j
j�T=2etr(�0:5
�1y0y) (2.5)where etr(A) = exp(tra
e(A)) for any square matrix A: The likelihood fun
tion(2.4) will be subsequently used in Gibbs sampling for the parameters of a fa
tormodel with k �xed, whereas the likelihood form (2.5) will be extensively used in theRJMCMC algorithms and other te
hniques that also treat un
ertainty about k to bepresented in Chapter 3.2.3 Model stru
ture and identi�
ation issuesAs is well-known, the k�fa
tor model must be further 
onstrained to de�ne a uniquemodel free from identi�
ation problems. First we address the standard issue thatthe model is invariant under transformations of the form �� = �P 0 and f �t = Pf t;2See Appendix A for the de�nition and some properties of the matrix variate normal distribution.6



where P is any orthogonal k � k matrix. There are many ways of identifying themodel by imposing 
onstraints on �; in
luding 
onstraints to orthogonal � matri
es,and 
onstraints su
h that �0��1� is diagonal (see Seber (1984), for example). Thealternative preferred here is to 
onstrain � to be a blo
k lower triangular matrix,assumed to be of full rank. That is,
� =

0BBBBBBBBBBBBBBB�
�11 0 0 � � � 0 0�21 �22 0 � � � 0 0�31 �32 �33 � � � 0 0... ... ... . . . ... ...�k�1;1 �k�1;2 �k�1;3 � � � �k�1;k�1 0�k;1 �k;2 �k;3 � � � �k;k�1 �k;k... ... ... . . . ... ...�m;1 �m;2 �m;3 � � � �m;k�1 �m;k

1CCCCCCCCCCCCCCCA (2.6)
where the diagonal elements �ii are stri
tly positive. This form is used, for example,in Geweke and Zhou (1996) and Aguilar and West (2000), and provides both identi�-
ation and, often, useful interpretation of the fa
tor model. In this form, the loadingsmatrix has r = mk�k(k�1)=2 free parameters. With m non-zero �i parameters, theresulting fa
tor form of 
 has m(k+1)� k(k� 1)=2 parameters, 
ompared with thetotal m(m+1)=2 in an un
onstrained (or k = m) model. This leads to the 
onstraintthat m(m+ 1)=2�m(k + 1) + k(k � 1)=2 � 0 (2.7)whi
h provides an upper bound on k: For example, m = 6 implies k � 3; m = 12implies k � 7; m = 20 implies k � 14; m = 50 implies k � 40; and so on. Evenfor small m; the bound will often not matter as relevant k values will not be solarge. In realisti
 problems, with m in double digits or more, the resulting boundwill rarely matter. Finally, note that the number of fa
tors 
an be in
reased beyondsu
h bounds by setting one or more of the residual varian
es �i to zero. This issimilar to rank restri
tions usually present in simultaneous equations estimation of7



e
onometri
 data. When k is larger than the maximum number of fa
tors we havean overidenti�ed model, in e
onometri
 terms, and 
 from equation 2.2 is not wellde�ned.A question arises about the full-rank assumption for �: This was addressed inGeweke and Singleton (1980) who shown that, if � is rank de�
ient, then the modelis unidenti�ed. Spe
i�
ally, if � has rank r < k there exists a matrix Q su
h that�Q = 0; Q0Q = I and, for any orthogonal matrix M ;
 = ��0 +� = (� +MQ0)0(� +MQ0) + (��MM 0): (2.8)This translation invarian
e of 
 under the fa
tor model implies la
k of identi�
ationand, in appli
ation, indu
es symmetries and potential multimodalities in resultinglikelihood fun
tions. This issue relates intimately to the question of un
ertainty ofthe number of fa
tors, dis
ussed further below.A �nal question 
on
erns the ordering of the yit variables and the 
onne
tionbetween a 
hosen ordering and the spe
i�
 form of the fa
tor loading matrix above.The order of variables is a modelling de
ision that has no e�e
t on the resultingtheoreti
al model nor on predi
tive inferen
es under the model. Given the k-fa
tormodel (2.1) spe
i�ed and appropriate for the y with variables in a spe
i�
 order,alternative orderings are trivially produ
ed via Ayt for some rotation matrix A:Model (2.1) then transforms to a similar fa
tor model for the reordered data Aytwith the same latent fa
tors but transformed loadings matrix A�: This new loadingsmatrix does not have the lower triangular stru
ture. However, we 
an always �nd anorthonormal matrix P su
h that A�P 0 is lower triangular, and so simply re
over thefa
tor model in pre
isely the form (2.1) with the same probability stru
ture for theunderlying latent fa
tors Pf t: This result 
on�rms that the order of the variablesin yt is theoreti
ally irrelevant assuming that k is properly 
hosen. However, whenit 
omes to model estimation, the order of variables has a determining e�e
t on the8




hoi
e of k; and the intera
tion between variable order and model �tting 
an be quitesubtle, as we illustrate in examples below.2.4 Independent 
ommon fa
torsIn this se
tion we show that whether E(ff 0) is diagonal or not is irrelevant, as faras a stati
 fa
tor model is 
on
erned.Let us start assuming that y follows a k-fa
tor model with dependent 
ommonfa
tors, ie. y = �f + � with � � N(0;�) and f � N(0;H) where H > 0 is notrestri
ted to be diagonal.Sin
eH > 0, L we 
an found su
h thatH = LL0 andL�1H(L0)�1 = L�1H(L�1)0 =I. Then, the new fa
tor model with � repla
ed by ~� = �L and the 
ommon fa
torsrepla
ed by ~f = L�1f , has independent 
ommon fa
tor stru
ture.To re
over the lower triangular property of �, the following fa
t is used; thereexists P su
h that P 0P = PP 0 = I and�� = ~�P 0 = �LP 0is lower triangular with positive real numbers on the main diagonal.A parti
ular expression for P is U�1 ~�1, where~� = (~�01; ~�02)0and UU 0 = ~�1 ~�01It follows that,P 0P = (U�1 ~�1)0(U�1 ~�1) = ~�01(U 0)�1U�1~�1= ~�01(UU 0)�1~�1 = ~�01(~�1~�01)�1~�1 = I;9



by the de�nition of P ;P , andPP 0 = U�1~�1 ~�01(U�1)0= U�1UU 0(U 0)�1 = I;This result has been overlooked by most resear
hers in fa
tor analysis and simpli-�es matters 
onsiderably. For the rest of the next few 
hapters we will assume thatthe 
ommon fa
tors are, a priori, independent. In the next se
tion we set up theprior information.2.5 Elements of prior spe
i�
ationTo 
omplete the model spe
i�
ation we require 
lasses of priors for the model pa-rameters � and �: Our reported analyses are based on very di�use but proper priorswith the following ingredients. For the fa
tor loadings, we take independent priorssu
h that �ij � N(0; C0) when i 6= j; and �ii � TN(0; C0)3 for the upper-diagonalelements of positive loadings i = 1; � � � ; k: The latter simply trun
ates the basi
 nor-mal prior to restri
t the diagonal elements to positive values. Analysis now requiresonly that we spe
ify the varian
e parameter C0; whi
h we take to be rather large inthe studies below.For ea
h of the idiosyn
rati
 varian
es �2i we assume a 
ommon inverse gammaprior, and take the varian
es to be independent. Spe
i�
ally, the �2i are independentlymodelled as �2i � IG(�=2; �s2=2) with spe
i�ed hyperparameters � and s2: Here s2 isthe prior mode of ea
h �2i and � the prior degrees of freedom hyperparameter4. Ourexamples below assume values of � to produ
e di�use though proper priors. Notethat we es
hew the use of standard improper referen
e priors p(�2i ) / 1=�2i : Su
h3See Appendix A for the de�nition and some properties of the trun
ated normal distribution.4See Appendix A for the de�nition and some properties of the inverse gamma distribution.10



priors lead to the Bayesian analogue of the so-
alled Heywood problem (Martin andM
Donald, 1981; Ihara and Kano, 1995). In terms of these varian
e parameters,likelihood fun
tions in fa
tor models are bounded below away from zero as �2i tendsto zero, so indu
ing singularities in the posterior at zero. Proper priors that de
ayto zero at the origin obviate this problem and indu
e proper posteriors.2.6 MCMC methods in a k�fa
tor modelWith a spe
i�ed k�fa
tor model, Bayesian analyses using MCMC methods arestraightforward. We simply summarise the main ingredients here, referring to Gewekeand Zhou (1996), Polasek (1997), and Aguilar and West (2000) for further details.MCMC analysis involves iteratively simulating from sets of 
onditional posterior dis-tributions whi
h, in this model, are standard forms. A basi
 method simulates fromthe 
onditional posteriors for ea
h of F ; � and � in turn, utilising the following setsof full 
onditional posteriors arising from our model as spe
i�ed. These are as follows.First, the fa
tor model in (2.3) 
an be seen as a standard multivariate regressionmodel with \parameters" F when �, � and k are �xed (e.g., Press (1982), Box andTiao (1973), Broemeling (1985) and Zellner (1971)). It easily follows that the full
onditional posterior for F fa
tors into independent normal distributions for the f t;namely f t � N((Ik + �0��1�)�1�0��1yt; (Ik + �0��1�)�1)independently for t = 1; : : : :T:Se
ond, the full 
onditional posterior for � also fa
tors into independent marginsfor the non-zero elements of the rows of �; as follows. For rows i = 1; : : : ; k; write�i = (�i1; : : : ; �ii)0 for just these non-zero elements. For the remaining rows i =k + 1; : : : ; m; write �i = (�i1; : : : ; �ik): Similarly, for i = 1; : : : ; k denote by F i theT � i matrix 
ontaining the �rst i 
olumns of F ; and for all i let yi be the 
olumn i11



of y:Finally, it is trivially dedu
ed that full 
onditional posterior for the elements of �redu
es to a set of m independent inverse gammas, with �2i � IG((� + T )=2; (�s2 +di)=2) where di = (yi � F�0i)0(yi � F�0i).Then we have full 
onditionals as follows:� for i = 1; : : : ; k; �i � N(mi;Ci)1(�ii > 0) wheremi = C i �C�10 �01i + ��2i F 0iyi�and C�1i = C�10 Ii + ��2i F 0iF i;� for i = k + 1; : : : ; m; �i � N(mi;Ci) where mi = Ci �C�10 �01k + ��2i F 0yi�and C�1i = C�10 Ik + ��2i F 0F .These distributions are easily simulated.2.7 SummaryIn this 
hapter we reviewed the state of the art in Bayesian fa
tor models along withmodel issues, su
h as invarian
e to linear transformation, identi�ability 
onstraints,prior information and MCMC methods for posterior inferen
e analysis when thenumber of 
ommon fa
tors, k is �xed. Chapter 3 explores simulated and real dataappli
ations that rely on the methodology here.We have explored a variety of simulated and real datasets to test the MCMCalgorithm. Some of them are fully explored in the next 
hapter, when model un
er-tainty for the number of fa
tors is also 
onsidered. However, before moving forward,the following 
omments are worth making:� When the number of fa
tors is known to be 
orre
t and the fa
tor loadings' priorinformation is relatively s
ar
e (represented by large values for C0, for instan
e),the MCMC algorithm 
onverges qui
kly for fairly large datasets and posterior�rst moments 
onverge to the 
lassi
al maximum likelihood estimators.12




