Chapter 2

Factor analysis

2.1 Introduction

Methodological innovations and real-world applications of factor analysis, and latent
structure models more generally, have developed rapidly in recent years, partly due to
increased access to appropriate computational tools. In particular, iterative MCMC
simulation methods have very naturally opened up access to fully Bayesian treatments
of factor analytic models, as developed and applied in, for example, Geweke and Zhou
(1996), Polasek (1997), Arminger and Muthén (1998) and, with extensions to dynamic
factor components in financial time series modelling (Aguilar and West, 2000; Pitt and
Shephard, 1999b). The growing range of developments and creative applications in
increasingly complex models, and with larger data sets in higher dimensions, justifies
the view that computational advances have been critically enabling; the near future
will very likely see much broader use of factor analysis in routine applied statistical
work.

The above studies, and others, explore fully Bayesian inference in latent factor
models in which the number of factors is a modelling choice; applied work typically

studies sensitivity of predictions and variations/ambiguities of interpretations as the



number of factors is varied as a control parameter. Formal inference on the number of
factors itself has been relatively ignored in the Bayesian literature, though there are
ranges of standard likelihood and frequentist methods available. Some key additional
references, Bayesian and non-Bayesian, include (in order of appearance) Lawley and
Maxwell (1963), Joreskog (1967), Martin and McDonald (1981), Bartholomew (1981),
Press (1982) (chapter 10), Lee (1981), Akaike (1987), Bartholomew (1987), Press and
Shigemasu (1989), Press and Shigemasu (1994). The book by Bartholomew (1987)

is an excellent overview of the field up to about ten years ago.

In this chapter we formally introduce the factor model along with some of its basic
properties. Section 2.2 introduces the basic notation and the probabilistic framework
in a k-factor model. Sections 2.3 and 2.4 discuss identification issues, invariance to
linear transformation and the independence assumption of common factors in some
details. We see, for instance, that assuming a nondiagonal covariance structure for
unobserved common factor scores is irrelevant from an estimation viewpoint. The
incorporation of prior information is touched in Section 2.5, while posterior analysis

through Markov chain Monte Carlo is introduced in Section 2.6.

2.2 Basic model form

Data on m related variables are considered to arise through random sampling from
a zero-mean multivariate normal distribution denoted by N (0, ) where €2 denotes
the m x m non-singular variance matrix '. A random sample of size T is denoted by
{y,,t = 1,...,T}. For any specified positive integer k < m, the standard k—factor
model relates each y, to an underlying k—vector of random variables f,, the common
factors, via

¥y =Bfi te (2.1)

1See Appendix A for the definition and some properties of the multivariate normal distribution.




where

% = diag(0?, -+, 02,).

the factors f, are independent with f, ~ N(0, I}),

the €, are independent normal m—vectors with €, ~ N(0,X), and

€; and f, are independent for all ¢ and s,

B is the m x k factor loadings matrix.

Under this model, the variance-covariance structure of the data distribution is con-

strained; we have Q =V (y,|Q) = V(y,|3,X) given by

Q=p6p"+3. (2.2)

The model implies that, conditional on the common factors, the observable variables

are uncorrelated: hence the common factors explain all the dependence structure

among the m variables. For any elements y;; and y;; of y,, we have the characterising

moments:
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In practical problems, especially with larger values of m, the number of factors k

will often be small relative to m, so that much of the variance-covariance structure is

explained by the common factors. The uniquenesses, or idiosyncratic variances, o?



measure the residual variability in each of the data variables once that contributed

by the factors is accounted for.

The model (2.1) can be written as

y=Fp +e¢ (2.3)

" are matrices of

where y = (g1, yz), F = (f1,+ fz) and € = (ex, - er)
dimension (T x m), (T x k) and (T x m), respectively. The elements € and F are
mutually independent matrix variate normal random variables, as in Dawid (1981),
Press (1982) and West and Harrison (1997) 2. The notation, as in Dawid (1981), is

simply € ~ N(0, I, X). We then have densities
p(y|F.B,%) < || T etr(—0.5% 'e€) (2.4)
and, marginalising over F',
p(yB.3) o Q] TPetr(-0.5Q 'y'y) (2.5)

where etr(A) = exp(trace(A)) for any square matrix A. The likelihood function
(2.4) will be subsequently used in Gibbs sampling for the parameters of a factor
model with % fixed, whereas the likelihood form (2.5) will be extensively used in the
RJMCMC algorithms and other techniques that also treat uncertainty about & to be

presented in Chapter 3.

2.3 Model structure and identification issues

As is well-known, the k—factor model must be further constrained to define a unique
model free from identification problems. First we address the standard issue that

the model is invariant under transformations of the form 8* = 8P' and f; = Pf,,

2See Appendix A for the definition and some properties of the matrix variate normal distribution.



where P is any orthogonal k x k matrix. There are many ways of identifying the
model by imposing constraints on 3, including constraints to orthogonal 8 matrices,
and constraints such that 'Y '3 is diagonal (see Seber (1984), for example). The
alternative preferred here is to constrain 8 to be a block lower triangular matrix,

assumed to be of full rank. That is,

Bi1 0 0o - 0 0
Ba1 Ba2 0 e 0 0
B31 P32 Pz - 0 0
_ : : : : : 56
p Br—11 Br-12 Br-1s - Br—ig— 0O (2:6)
Br1 B2 Brs - Brr—1  DBrik
/Bm,l Bm,Q 6m,3 o /Bm,kfl 6m,k

where the diagonal elements f3;; are strictly positive. This form is used, for example,
in Geweke and Zhou (1996) and Aguilar and West (2000), and provides both identifi-
cation and, often, useful interpretation of the factor model. In this form, the loadings
matrix has r = mk —k(k —1)/2 free parameters. With m non-zero o; parameters, the
resulting factor form of Q has m(k+ 1) — k(k — 1)/2 parameters, compared with the
total m(m+1)/2 in an unconstrained (or £ = m) model. This leads to the constraint
that

m(m+1)/2 = m(k+1)+ k(k — 1)/2 > 0 (2.7)

which provides an upper bound on k. For example, m = 6 implies £ < 3, m = 12
implies £ < 7, m = 20 implies k£ < 14, m = 50 implies £ < 40, and so on. Even
for small m, the bound will often not matter as relevant & values will not be so
large. In realistic problems, with m in double digits or more, the resulting bound
will rarely matter. Finally, note that the number of factors can be increased beyond
such bounds by setting one or more of the residual variances o; to zero. This is
similar to rank restrictions usually present in simultaneous equations estimation of
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econometric data. When £ is larger than the maximum number of factors we have

an overidentified model, in econometric terms, and €2 from equation 2.2 is not well

defined.

A question arises about the full-rank assumption for B. This was addressed in
Geweke and Singleton (1980) who shown that, if B is rank deficient, then the model
is unidentified. Specifically, if 8 has rank r < k there exists a matrix @ such that
BQ =0, Q'Q = I and, for any orthogonal matrix M,

Q=pBF+X=(B+MQ")(B+MQ)+ (X~ MM'). (2.8)

This translation invariance of €2 under the factor model implies lack of identification
and, in application, induces symmetries and potential multimodalities in resulting
likelihood functions. This issue relates intimately to the question of uncertainty of
the number of factors, discussed further below.

A final question concerns the ordering of the y;; variables and the connection
between a chosen ordering and the specific form of the factor loading matrix above.
The order of variables is a modelling decision that has no effect on the resulting
theoretical model nor on predictive inferences under the model. Given the k-factor
model (2.1) specified and appropriate for the y with variables in a specific order,
alternative orderings are trivially produced via Ay, for some rotation matrix A.
Model (2.1) then transforms to a similar factor model for the reordered data Ay,
with the same latent factors but transformed loadings matrix AB. This new loadings
matrix does not have the lower triangular structure. However, we can always find an
orthonormal matrix P such that ABP' is lower triangular, and so simply recover the
factor model in precisely the form (2.1) with the same probability structure for the
underlying latent factors P f,. This result confirms that the order of the variables
in y, is theoretically irrelevant assuming that £ is properly chosen. However, when

it comes to model estimation, the order of variables has a determining effect on the
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choice of £, and the interaction between variable order and model fitting can be quite

subtle, as we illustrate in examples below.

2.4 Independent common factors

In this section we show that whether E(ff') is diagonal or not is irrelevant, as far

as a static factor model is concerned.

Let us start assuming that y follows a k-factor model with dependent common
factors, ie. y = Bf + € with € ~ N(0,X) and f ~ N(0,H) where H > 0 is not
restricted to be diagonal.

Since H > 0, L we can found such that H = LL'and L 'H(L') "' = L 'H(L ')
I. Then, the new factor model with 8 replaced by B = BL and the common factors

replaced by f = L' f, has independent common factor structure.

To recover the lower triangular property of 8, the following fact is used; there

exists P such that PP = PP’ = I and
B*=pBP =BLP

is lower triangular with positive real numbers on the main diagonal.

A particular expression for P is U’lﬁl, where

~ ~1 ~1

B = (,31752>I

and

It follows that,

PP = (U'B)U'B)=8,U)"U"B



by the definition of P; P, and

PP = U BB (U

- Uv''vvu'(u)t=1,

This result has been overlooked by most researchers in factor analysis and simpli-
fies matters considerably. For the rest of the next few chapters we will assume that
the common factors are, a priori, independent. In the next section we set up the

prior information.

2.5 Elements of prior specification

To complete the model specification we require classes of priors for the model pa-
rameters B and X. Our reported analyses are based on very diffuse but proper priors
with the following ingredients. For the factor loadings, we take independent priors
such that ;; ~ N(0,Cy) when i # j, and S; ~ TN(0,Cy)* for the upper-diagonal
elements of positive loadings i = 1,---, k. The latter simply truncates the basic nor-
mal prior to restrict the diagonal elements to positive values. Analysis now requires
only that we specify the variance parameter Cy, which we take to be rather large in

the studies below.

For each of the idiosyncratic variances o} we assume a common inverse gamma
prior, and take the variances to be independent. Specifically, the o7 are independently
modelled as o7 ~ IG(v/2,vs*/2) with specified hyperparameters v and s*. Here s? is
the prior mode of each ¢? and v the prior degrees of freedom hyperparameter?. Our
examples below assume values of v to produce diffuse though proper priors. Note

that we eschew the use of standard improper reference priors p(c?) o 1/02. Such

3See Appendix A for the definition and some properties of the truncated normal distribution.

4See Appendix A for the definition and some properties of the inverse gamma distribution.
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priors lead to the Bayesian analogue of the so-called Heywood problem (Martin and
McDonald, 1981; Thara and Kano, 1995). In terms of these variance parameters,
likelihood functions in factor models are bounded below away from zero as o7 tends
to zero, so inducing singularities in the posterior at zero. Proper priors that decay

to zero at the origin obviate this problem and induce proper posteriors.

2.6 MCMC methods in a k—factor model

With a specified k—factor model, Bayesian analyses using MCMC methods are
straightforward. We simply summarise the main ingredients here, referring to Geweke
and Zhou (1996), Polasek (1997), and Aguilar and West (2000) for further details.
MCMC analysis involves iteratively simulating from sets of conditional posterior dis-
tributions which, in this model, are standard forms. A basic method simulates from
the conditional posteriors for each of F', 8 and X in turn, utilising the following sets
of full conditional posteriors arising from our model as specified. These are as follows.

First, the factor model in (2.3) can be seen as a standard multivariate regression
model with “parameters” F' when 3, ¥ and k are fixed (e.g., Press (1982), Box and
Tiao (1973), Broemeling (1985) and Zellner (1971)). It easily follows that the full
conditional posterior for F' factors into independent normal distributions for the f,.
namely

fo~o NI+ BE7'8)'8' Sy, (I + BE7'8) )
independently for t =1,....7T.

Second, the full conditional posterior for 8 also factors into independent margins
for the non-zero elements of the rows of 8. as follows. For rows i = 1,..., k, write
B, = (Bi1,-..., i) for just these non-zero elements. For the remaining rows i =
E+1,....m, write B, = (Bi1, ..., Bi). Similarly, for i = 1,...,k denote by F; the
T x ¢ matrix containing the first 7 columns of F', and for all ¢ let y, be the column i
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of y.

Finally, it is trivially deduced that full conditional posterior for the elements of 3
reduces to a set of m independent inverse gammas, with o? ~ IG((v + T)/2, (vs* +
d;)/2) where d; = (y; — FB;)'(y; — F3;).

Then we have full conditionals as follows:
o fori =1,...,k B; ~ N(m;, C;)1(3; > 0) where m; = C, (Cglugli + JZQF;yZ»)

and C;' = Cy'I; + 0, °F,F;;

e fori=kLk+1,....,m, 3, ~

7

N(m;, C;) where m; = C, (Calﬂglk + U[QF’yi)
and C;' =Cy ' I, + 0, °F'F.

These distributions are easily simulated.

2.7 Summary

In this chapter we reviewed the state of the art in Bayesian factor models along with
model issues, such as invariance to linear transformation, identifiability constraints,
prior information and MCMC methods for posterior inference analysis when the
number of common factors, k is fixed. Chapter 3 explores simulated and real data
applications that rely on the methodology here.

We have explored a variety of simulated and real datasets to test the MCMC
algorithm. Some of them are fully explored in the next chapter, when model uncer-
tainty for the number of factors is also considered. However, before moving forward,

the following comments are worth making:

e When the number of factors is known to be correct and the factor loadings’ prior
information is relatively scarce (represented by large values for Cy, for instance),
the MCMC algorithm converges quickly for fairly large datasets and posterior

first moments converge to the classical maximum likelihood estimators.
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