
Chapter 2Fator analysis

2.1 IntrodutionMethodologial innovations and real-world appliations of fator analysis, and latentstruture models more generally, have developed rapidly in reent years, partly due toinreased aess to appropriate omputational tools. In partiular, iterative MCMCsimulation methods have very naturally opened up aess to fully Bayesian treatmentsof fator analyti models, as developed and applied in, for example, Geweke and Zhou(1996), Polasek (1997), Arminger andMuth�en (1998) and, with extensions to dynamifator omponents in �nanial time series modelling (Aguilar andWest, 2000; Pitt andShephard, 1999b). The growing range of developments and reative appliations ininreasingly omplex models, and with larger data sets in higher dimensions, justi�esthe view that omputational advanes have been ritially enabling; the near futurewill very likely see muh broader use of fator analysis in routine applied statistialwork.The above studies, and others, explore fully Bayesian inferene in latent fatormodels in whih the number of fators is a modelling hoie; applied work typiallystudies sensitivity of preditions and variations/ambiguities of interpretations as the3



number of fators is varied as a ontrol parameter. Formal inferene on the number offators itself has been relatively ignored in the Bayesian literature, though there areranges of standard likelihood and frequentist methods available. Some key additionalreferenes, Bayesian and non-Bayesian, inlude (in order of appearane) Lawley andMaxwell (1963), Joreskog (1967), Martin and MDonald (1981), Bartholomew (1981),Press (1982) (hapter 10), Lee (1981), Akaike (1987), Bartholomew (1987), Press andShigemasu (1989), Press and Shigemasu (1994). The book by Bartholomew (1987)is an exellent overview of the �eld up to about ten years ago.In this hapter we formally introdue the fator model along with some of its basiproperties. Setion 2.2 introdues the basi notation and the probabilisti frameworkin a k-fator model. Setions 2.3 and 2.4 disuss identi�ation issues, invariane tolinear transformation and the independene assumption of ommon fators in somedetails. We see, for instane, that assuming a nondiagonal ovariane struture forunobserved ommon fator sores is irrelevant from an estimation viewpoint. Theinorporation of prior information is touhed in Setion 2.5, while posterior analysisthrough Markov hain Monte Carlo is introdued in Setion 2.6.2.2 Basi model formData on m related variables are onsidered to arise through random sampling froma zero-mean multivariate normal distribution denoted by N(0;
) where 
 denotesthe m�m non-singular variane matrix 1. A random sample of size T is denoted byfyt; t = 1; : : : ; Tg: For any spei�ed positive integer k � m; the standard k�fatormodel relates eah yt to an underlying k�vetor of random variables f t; the ommonfators, via yt = �f t + �t (2.1)1See Appendix A for the de�nition and some properties of the multivariate normal distribution.4



where� the fators f t are independent with f t � N(0; Ik);� the �t are independent normal m�vetors with �t � N(0;�); and� = diag(�21; � � � ; �2m);� �t and f s are independent for all t and s;� � is the m� k fator loadings matrix.Under this model, the variane-ovariane struture of the data distribution is on-strained; we have 
 = V (ytj
) = V (ytj�;�) given by
 = ��0 +�: (2.2)The model implies that, onditional on the ommon fators, the observable variablesare unorrelated: hene the ommon fators explain all the dependene strutureamong the m variables. For any elements yit and yjt of yt; we have the haraterisingmoments: var(yitj�;f ;�) = �2i ; 8i;ov(yit; yjtj�;f ;�) = 0; 8i; j; i 6= j;var(yitj�;�) = kXl=1 �2il + �2i ; 8i;ov(yit; yjtj�;�) = kXl=1 �il�jl; 8i; j; i 6= j:In pratial problems, espeially with larger values of m; the number of fators kwill often be small relative to m; so that muh of the variane-ovariane struture isexplained by the ommon fators. The uniquenesses, or idiosynrati varianes, �2i5



measure the residual variability in eah of the data variables one that ontributedby the fators is aounted for.The model (2.1) an be written asy = F�0 + � (2.3)where y = (y1; � � � ;yT )0, F = (f1; � � � ;fT )0 and � = (�1; � � � ; �T )0 are matries ofdimension (T � m); (T � k) and (T � m); respetively. The elements � and F aremutually independent matrix variate normal random variables, as in Dawid (1981),Press (1982) and West and Harrison (1997) 2. The notation, as in Dawid (1981), issimply � � N(0; IT ;�): We then have densitiesp(yjF ;�;�) / j�j�T=2etr(�0:5��1��0) (2.4)and, marginalising over F ;p(yj�;�) / j
j�T=2etr(�0:5
�1y0y) (2.5)where etr(A) = exp(trae(A)) for any square matrix A: The likelihood funtion(2.4) will be subsequently used in Gibbs sampling for the parameters of a fatormodel with k �xed, whereas the likelihood form (2.5) will be extensively used in theRJMCMC algorithms and other tehniques that also treat unertainty about k to bepresented in Chapter 3.2.3 Model struture and identi�ation issuesAs is well-known, the k�fator model must be further onstrained to de�ne a uniquemodel free from identi�ation problems. First we address the standard issue thatthe model is invariant under transformations of the form �� = �P 0 and f �t = Pf t;2See Appendix A for the de�nition and some properties of the matrix variate normal distribution.6



where P is any orthogonal k � k matrix. There are many ways of identifying themodel by imposing onstraints on �; inluding onstraints to orthogonal � matries,and onstraints suh that �0��1� is diagonal (see Seber (1984), for example). Thealternative preferred here is to onstrain � to be a blok lower triangular matrix,assumed to be of full rank. That is,
� =

0BBBBBBBBBBBBBBB�
�11 0 0 � � � 0 0�21 �22 0 � � � 0 0�31 �32 �33 � � � 0 0... ... ... . . . ... ...�k�1;1 �k�1;2 �k�1;3 � � � �k�1;k�1 0�k;1 �k;2 �k;3 � � � �k;k�1 �k;k... ... ... . . . ... ...�m;1 �m;2 �m;3 � � � �m;k�1 �m;k

1CCCCCCCCCCCCCCCA (2.6)
where the diagonal elements �ii are stritly positive. This form is used, for example,in Geweke and Zhou (1996) and Aguilar and West (2000), and provides both identi�-ation and, often, useful interpretation of the fator model. In this form, the loadingsmatrix has r = mk�k(k�1)=2 free parameters. With m non-zero �i parameters, theresulting fator form of 
 has m(k+1)� k(k� 1)=2 parameters, ompared with thetotal m(m+1)=2 in an unonstrained (or k = m) model. This leads to the onstraintthat m(m+ 1)=2�m(k + 1) + k(k � 1)=2 � 0 (2.7)whih provides an upper bound on k: For example, m = 6 implies k � 3; m = 12implies k � 7; m = 20 implies k � 14; m = 50 implies k � 40; and so on. Evenfor small m; the bound will often not matter as relevant k values will not be solarge. In realisti problems, with m in double digits or more, the resulting boundwill rarely matter. Finally, note that the number of fators an be inreased beyondsuh bounds by setting one or more of the residual varianes �i to zero. This issimilar to rank restritions usually present in simultaneous equations estimation of7



eonometri data. When k is larger than the maximum number of fators we havean overidenti�ed model, in eonometri terms, and 
 from equation 2.2 is not wellde�ned.A question arises about the full-rank assumption for �: This was addressed inGeweke and Singleton (1980) who shown that, if � is rank de�ient, then the modelis unidenti�ed. Spei�ally, if � has rank r < k there exists a matrix Q suh that�Q = 0; Q0Q = I and, for any orthogonal matrix M ;
 = ��0 +� = (� +MQ0)0(� +MQ0) + (��MM 0): (2.8)This translation invariane of 
 under the fator model implies lak of identi�ationand, in appliation, indues symmetries and potential multimodalities in resultinglikelihood funtions. This issue relates intimately to the question of unertainty ofthe number of fators, disussed further below.A �nal question onerns the ordering of the yit variables and the onnetionbetween a hosen ordering and the spei� form of the fator loading matrix above.The order of variables is a modelling deision that has no e�et on the resultingtheoretial model nor on preditive inferenes under the model. Given the k-fatormodel (2.1) spei�ed and appropriate for the y with variables in a spei� order,alternative orderings are trivially produed via Ayt for some rotation matrix A:Model (2.1) then transforms to a similar fator model for the reordered data Aytwith the same latent fators but transformed loadings matrix A�: This new loadingsmatrix does not have the lower triangular struture. However, we an always �nd anorthonormal matrix P suh that A�P 0 is lower triangular, and so simply reover thefator model in preisely the form (2.1) with the same probability struture for theunderlying latent fators Pf t: This result on�rms that the order of the variablesin yt is theoretially irrelevant assuming that k is properly hosen. However, whenit omes to model estimation, the order of variables has a determining e�et on the8



hoie of k; and the interation between variable order and model �tting an be quitesubtle, as we illustrate in examples below.2.4 Independent ommon fatorsIn this setion we show that whether E(ff 0) is diagonal or not is irrelevant, as faras a stati fator model is onerned.Let us start assuming that y follows a k-fator model with dependent ommonfators, ie. y = �f + � with � � N(0;�) and f � N(0;H) where H > 0 is notrestrited to be diagonal.SineH > 0, L we an found suh thatH = LL0 andL�1H(L0)�1 = L�1H(L�1)0 =I. Then, the new fator model with � replaed by ~� = �L and the ommon fatorsreplaed by ~f = L�1f , has independent ommon fator struture.To reover the lower triangular property of �, the following fat is used; thereexists P suh that P 0P = PP 0 = I and�� = ~�P 0 = �LP 0is lower triangular with positive real numbers on the main diagonal.A partiular expression for P is U�1 ~�1, where~� = (~�01; ~�02)0and UU 0 = ~�1 ~�01It follows that,P 0P = (U�1 ~�1)0(U�1 ~�1) = ~�01(U 0)�1U�1~�1= ~�01(UU 0)�1~�1 = ~�01(~�1~�01)�1~�1 = I;9



by the de�nition of P ;P , andPP 0 = U�1~�1 ~�01(U�1)0= U�1UU 0(U 0)�1 = I;This result has been overlooked by most researhers in fator analysis and simpli-�es matters onsiderably. For the rest of the next few hapters we will assume thatthe ommon fators are, a priori, independent. In the next setion we set up theprior information.2.5 Elements of prior spei�ationTo omplete the model spei�ation we require lasses of priors for the model pa-rameters � and �: Our reported analyses are based on very di�use but proper priorswith the following ingredients. For the fator loadings, we take independent priorssuh that �ij � N(0; C0) when i 6= j; and �ii � TN(0; C0)3 for the upper-diagonalelements of positive loadings i = 1; � � � ; k: The latter simply trunates the basi nor-mal prior to restrit the diagonal elements to positive values. Analysis now requiresonly that we speify the variane parameter C0; whih we take to be rather large inthe studies below.For eah of the idiosynrati varianes �2i we assume a ommon inverse gammaprior, and take the varianes to be independent. Spei�ally, the �2i are independentlymodelled as �2i � IG(�=2; �s2=2) with spei�ed hyperparameters � and s2: Here s2 isthe prior mode of eah �2i and � the prior degrees of freedom hyperparameter4. Ourexamples below assume values of � to produe di�use though proper priors. Notethat we eshew the use of standard improper referene priors p(�2i ) / 1=�2i : Suh3See Appendix A for the de�nition and some properties of the trunated normal distribution.4See Appendix A for the de�nition and some properties of the inverse gamma distribution.10



priors lead to the Bayesian analogue of the so-alled Heywood problem (Martin andMDonald, 1981; Ihara and Kano, 1995). In terms of these variane parameters,likelihood funtions in fator models are bounded below away from zero as �2i tendsto zero, so induing singularities in the posterior at zero. Proper priors that deayto zero at the origin obviate this problem and indue proper posteriors.2.6 MCMC methods in a k�fator modelWith a spei�ed k�fator model, Bayesian analyses using MCMC methods arestraightforward. We simply summarise the main ingredients here, referring to Gewekeand Zhou (1996), Polasek (1997), and Aguilar and West (2000) for further details.MCMC analysis involves iteratively simulating from sets of onditional posterior dis-tributions whih, in this model, are standard forms. A basi method simulates fromthe onditional posteriors for eah of F ; � and � in turn, utilising the following setsof full onditional posteriors arising from our model as spei�ed. These are as follows.First, the fator model in (2.3) an be seen as a standard multivariate regressionmodel with \parameters" F when �, � and k are �xed (e.g., Press (1982), Box andTiao (1973), Broemeling (1985) and Zellner (1971)). It easily follows that the fullonditional posterior for F fators into independent normal distributions for the f t;namely f t � N((Ik + �0��1�)�1�0��1yt; (Ik + �0��1�)�1)independently for t = 1; : : : :T:Seond, the full onditional posterior for � also fators into independent marginsfor the non-zero elements of the rows of �; as follows. For rows i = 1; : : : ; k; write�i = (�i1; : : : ; �ii)0 for just these non-zero elements. For the remaining rows i =k + 1; : : : ; m; write �i = (�i1; : : : ; �ik): Similarly, for i = 1; : : : ; k denote by F i theT � i matrix ontaining the �rst i olumns of F ; and for all i let yi be the olumn i11



of y:Finally, it is trivially dedued that full onditional posterior for the elements of �redues to a set of m independent inverse gammas, with �2i � IG((� + T )=2; (�s2 +di)=2) where di = (yi � F�0i)0(yi � F�0i).Then we have full onditionals as follows:� for i = 1; : : : ; k; �i � N(mi;Ci)1(�ii > 0) wheremi = C i �C�10 �01i + ��2i F 0iyi�and C�1i = C�10 Ii + ��2i F 0iF i;� for i = k + 1; : : : ; m; �i � N(mi;Ci) where mi = Ci �C�10 �01k + ��2i F 0yi�and C�1i = C�10 Ik + ��2i F 0F .These distributions are easily simulated.2.7 SummaryIn this hapter we reviewed the state of the art in Bayesian fator models along withmodel issues, suh as invariane to linear transformation, identi�ability onstraints,prior information and MCMC methods for posterior inferene analysis when thenumber of ommon fators, k is �xed. Chapter 3 explores simulated and real dataappliations that rely on the methodology here.We have explored a variety of simulated and real datasets to test the MCMCalgorithm. Some of them are fully explored in the next hapter, when model uner-tainty for the number of fators is also onsidered. However, before moving forward,the following omments are worth making:� When the number of fators is known to be orret and the fator loadings' priorinformation is relatively sare (represented by large values for C0, for instane),the MCMC algorithm onverges quikly for fairly large datasets and posterior�rst moments onverge to the lassial maximum likelihood estimators.12




