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Scope

Regression with p >> n — Factor regressions

• Empirical factor models:

– SVD (PCA) regression variables

– Multiple shrinkage priors – Generalised ridge regression

• General class of latent factor models:

– Regression on latent factors

– SVD (PCA) regression as special case

∗ resolves questions/issues in Bayesian SVD regression

• Sparse latent factor models

• Examples
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SVD/PCA regression with p >> n

• y = X′
β + ν

• p > n : X is “tall and skinny”

• SVD: X = AF transforms model to y = F′
θ + ν with θ = A′

β

• Dimension reduction from p to n – many one

• priors: θi ∼ Tk(0, 1)

or N(0, τ 2
i
) with inverse gamma prior on τ 2

i

– different “weights” in PCA/SV axes

– conditionally conjugate, generalised “ridge regression” prior

• MCMC for inference on θ, τ1, . . . , τk

• binary regression: observe indicators of yi ≥ 0 for probit (or other)
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Using SVD/PCA regression

Inference required for β where θ = A′
β

• Multiple generalised inverses β = A−
θ

• Implicit prior(s) on β

– Generalised g−priors, generalised shrinkage

Issues:

• Choice of inverse transformation? Special choice β = Aθ ?

• Design-data dependent priors

– Prediction at new design points

– New design points, new parameters, new priors!

– Fit model, define prior on all design points
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SVD regression: Example

Cookie dough spectra - Brown, Fearn & Vanucci (1999 Biometrika)

• Predictors: Spectra: near-infrared spectroscopy of cookie dough

NIR reflectance measures: spectrum over 300 wavelengths

• Response: fat content of cookies

Aim: Predict fat content of cookies using features of spectrum

Analysis: 39 training cases, 39 validation cases
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Spectra of 78 biscuit dough samples
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Standardised spectra of 78 biscuit dough samples
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Factor coefficients θ
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Regression coefficients β for wavelengths
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Cluster near 1720 is characteristic of fat absorbance (tiny wiggles in spectra)
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Response versus fitted values
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Better out-of-sample prediction MSE than original authors
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Normal qqplot of fitted residuals
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Latent factor regression models

Sample i: column i of X is

xi = Bλi + εi

• λi ∼ N(0,∆) and εi ∼ N(0,Ψ)

• diagonal variance matrices

• common patterns: (few) latent factors: k =dim(λi)

Regression:

yi ∼ N(λ′

i
θ, v)

• outcomes regress on latent factors in xi – indirect regression on xi

• different outcomes relate to different latent factors
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Latent factor models: SVD regression case

• Latent factor model defines p(yi,xi, λi)

• Implied p(yi|xi): linear regression of yi on xi

• Linear regression coefficient β = Hθ

• H depends on B,∆,Ψ

Some implications:

• Prior on θ implies (unique) prior on β

• Limiting case: Ψ → 0 (plus orthogonal columns) leads to SVD

regression

• Complete theoretical rationale for Bayesian SVD analysis
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Analysis of latent factor models

• SVD is empirical, “noisy” estimates of factors, loadings

• Artificial orthogonality constraints

• Sample size dependence of number of factors

Fitting latent factor models:

• MCMC

• Coupled factor model with regression model

• Identification questions – constraints on loadings matrix B

• Informative priors
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Sparse factor models

Interest in high-dimensional x : p >> n

Example: Gene expression and molecular characterisation problems

• Samples are gene expression from tumour, cell line experiment, etc

• Regression to characterise subgroups or physiological/clinical

outcome

Sparse factor concept:

• Many genes purely ideosyncratic

• Factors represent biology: Gene networks/pathways

– A factor involves relatively small number of genes

– A genes is involved in 1 factor, or a very few factors

Model sparsity: many zeros in B
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Fitting sparse factor models

• Priors on factor loadings B induce many zeros

• Column (factor) j: elements independent, high probability of zero

• “Strong” prior to focus on dimension reduction within factors

• Computationally (very) intensive

• Confounding difficulties with too few factors in model

• Next stages of development will involve more elaborate prior

structure

Breast cancer example:

• Sparse factor analysis of 7000 genes, 25 factors

• Improves out-of-sample (CV) predictions in binary regressions

• ER factors - Oestrogen receptor status
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Duke BC factor analysis: p = 7000, k = 25

Factor model SVD
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Current developments

• Computation: Cluster-based implementations

• Mixture models for latent factors

• Gaussian process/SVM regressions with kernels in factor space

• Hierarchical factor models – multiple layers

• Domain knowledge structuring priors

Co-conspirators:

Ming Liao (Duke)

Hedibert Lopes (UFRJ)

Rainer Spang (MPI, Berlin)


