# FACTOR REGRESSION MODELS

## Mike West

# Institute of Statistics & Decision Sciences Duke University

June 6th 2002, Valencia VII - Tenerife

# Scope

#### **Regression with** p >> n — Factor regressions

- Empirical factor models:
  - SVD (PCA) regression variables
  - Multiple shrinkage priors Generalised ridge regression
- General class of latent factor models:
  - Regression on latent factors
  - SVD (PCA) regression as special case
    - \* resolves questions/issues in Bayesian SVD regression
- Sparse latent factor models
- Examples

# **SVD/PCA regression with** p >> n

- $\mathbf{y} = \mathbf{X}' \boldsymbol{\beta} + \boldsymbol{\nu}$
- p > n: **X** is "tall and skinny"
- SVD:  $\mathbf{X} = \mathbf{AF}$  transforms model to  $\mathbf{y} = \mathbf{F}' \boldsymbol{\theta} + \nu$  with  $\boldsymbol{\theta} = \mathbf{A}' \boldsymbol{\beta}$
- Dimension reduction from p to n many one
- priors:  $\theta_i \sim T_k(0, 1)$

or  $N(0, \tau_i^2)$  with inverse gamma prior on  $\tau_i^2$ 

- different "weights" in PCA/SV axes
- conditionally conjugate, generalised "ridge regression" prior
- MCMC for inference on  $\theta, \tau_1, \ldots, \tau_k$
- binary regression: observe indicators of  $y_i \ge 0$  for probit (or other)

# **Using SVD/PCA regression**

Inference required for  $\beta$  where  $\theta = \mathbf{A}' \beta$ 

- Multiple generalised inverses  $\beta = \mathbf{A}^- \boldsymbol{\theta}$
- Implicit prior(s) on  $\beta$ 
  - Generalised g–priors, generalised shrinkage

#### **Issues:**

- Choice of inverse transformation? Special choice  $\beta = \mathbf{A}\theta$ ?
- Design-data dependent priors
  - Prediction at new design points
  - New design points, new parameters, new priors!
  - Fit model, define prior on all design points

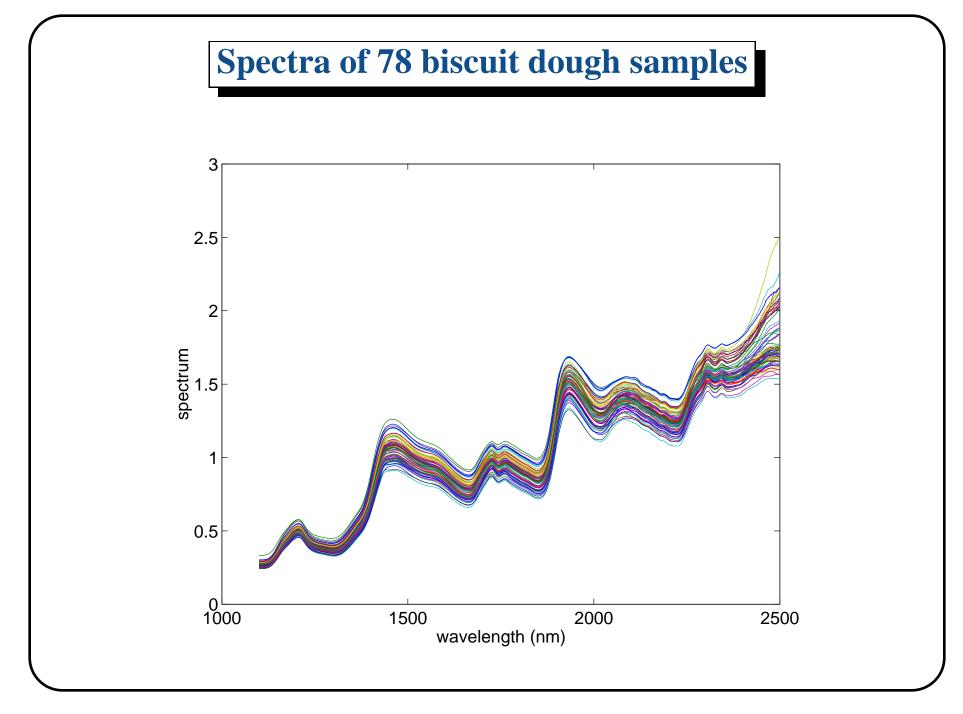


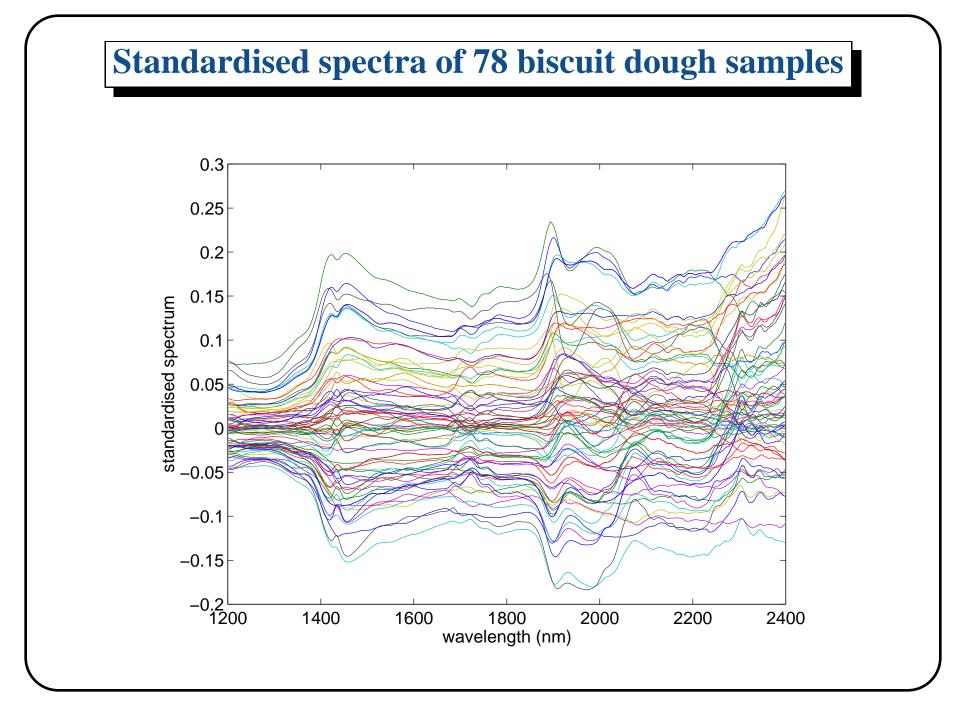
Cookie dough spectra - Brown, Fearn & Vanucci (1999 Biometrika)

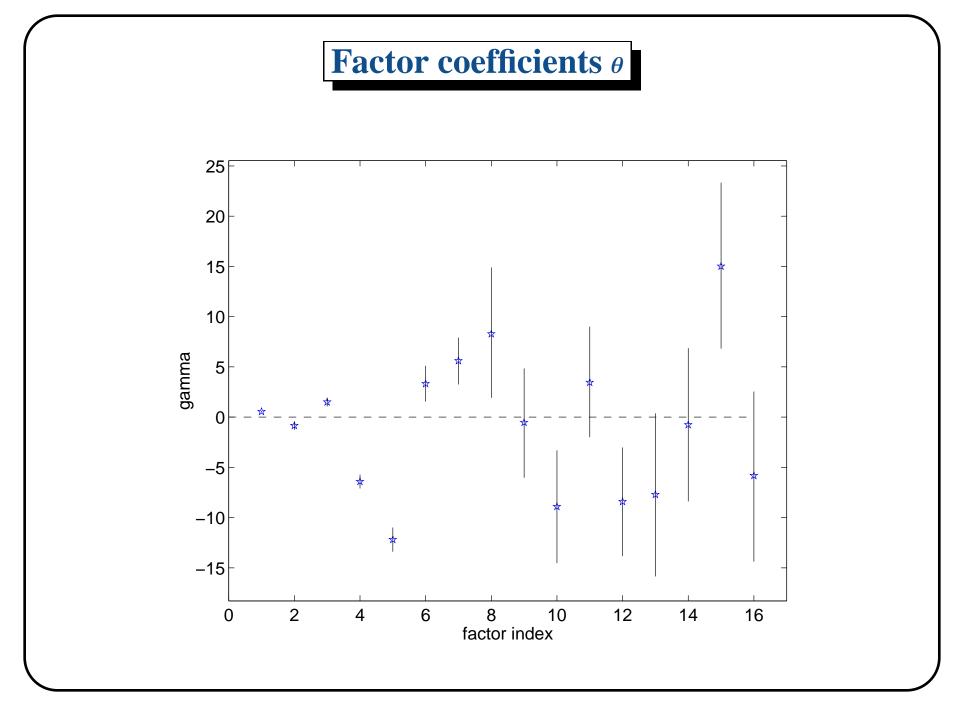
- **Predictors**: Spectra: near-infrared spectroscopy of cookie dough NIR reflectance measures: spectrum over 300 wavelengths
- **Response**: fat content of cookies

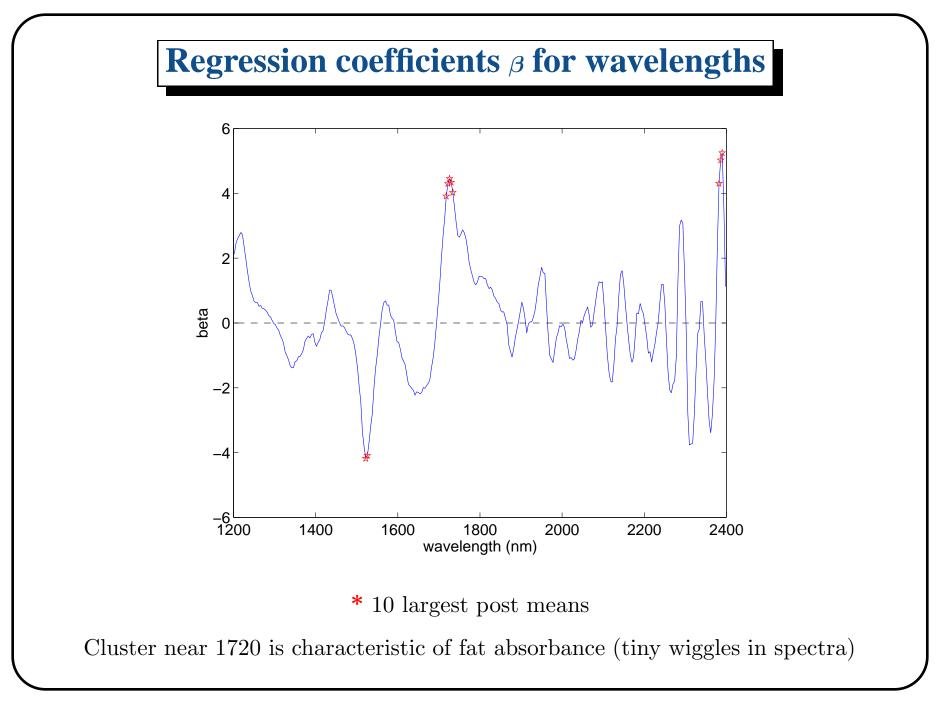
Aim: Predict fat content of cookies using features of spectrum

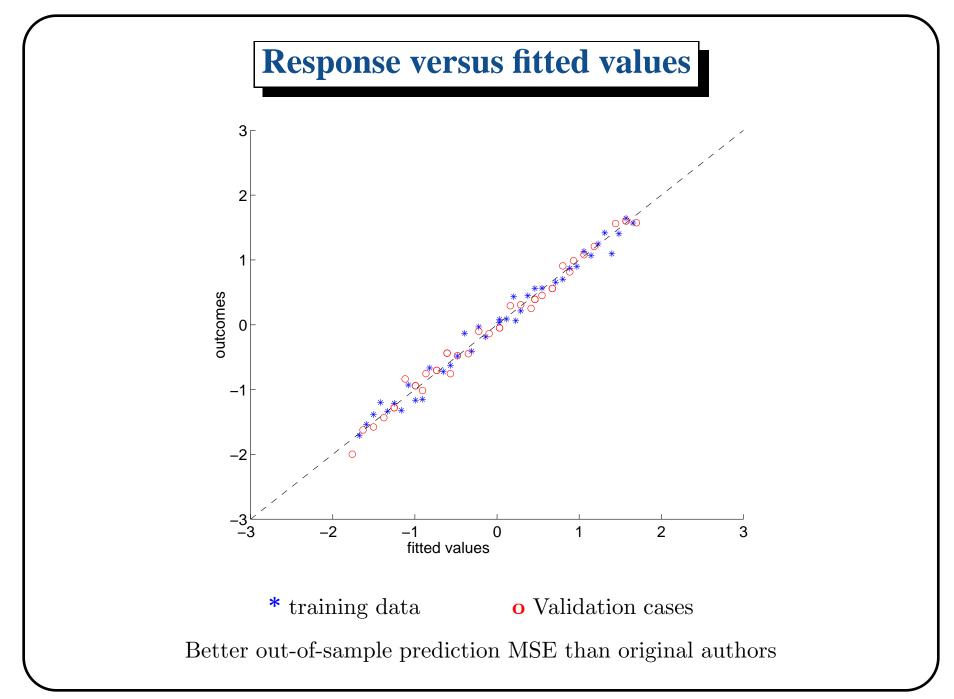
Analysis: 39 training cases, 39 validation cases

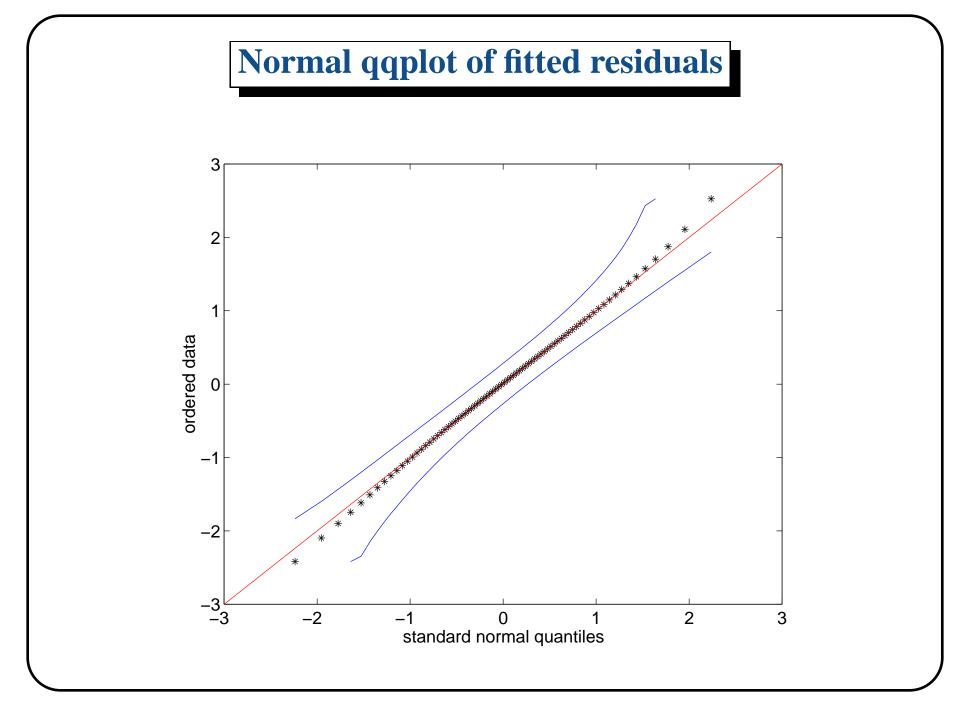












## Latent factor regression models

Sample i: column i of X is

$$\mathbf{x}_i = \mathbf{B} oldsymbol{\lambda}_i + oldsymbol{\epsilon}_i$$

- $\lambda_i \sim N(\mathbf{0}, \boldsymbol{\Delta})$  and  $\boldsymbol{\epsilon}_i \sim N(\mathbf{0}, \boldsymbol{\Psi})$
- diagonal variance matrices
- common patterns: (few) latent factors:  $k = \dim(\lambda_i)$

**Regression**:

 $y_i \sim N(\boldsymbol{\lambda}_i' \boldsymbol{\theta}, v)$ 

- outcomes regress on latent factors in  $\mathbf{x}_i$  indirect regression on  $\mathbf{x}_i$
- different outcomes relate to different latent factors

## Latent factor models: SVD regression case

- Latent factor model defines  $p(y_i, \mathbf{x}_i, \boldsymbol{\lambda}_i)$
- Implied  $p(y_i | \mathbf{x}_i)$ : linear regression of  $y_i$  on  $\mathbf{x}_i$
- Linear regression coefficient  $\beta = H\theta$
- **H** depends on  $\mathbf{B}, \mathbf{\Delta}, \Psi$

#### Some implications:

- Prior on  $\theta$  implies (unique) prior on  $\beta$
- Limiting case:  $\Psi \to 0$  (plus orthogonal columns) leads to SVD regression
- Complete theoretical rationale for Bayesian SVD analysis

# **Analysis of latent factor models**

- SVD is empirical, "noisy" estimates of factors, loadings
- Artificial orthogonality constraints
- Sample size dependence of number of factors

#### Fitting latent factor models:

- MCMC
- Coupled factor model with regression model
- $\bullet\,$  Identification questions constraints on loadings matrix B
- Informative priors

# **Sparse factor models**

Interest in high-dimensional  $\mathbf{x}: p >> n$ 

**Example:** Gene expression and molecular characterisation problems

- Samples are gene expression from tumour, cell line experiment, etc
- Regression to characterise subgroups or physiological/clinical outcome

#### Sparse factor concept:

- Many genes purely ideosyncratic
- Factors represent biology: Gene networks/pathways
  - A factor involves relatively small number of genes
  - A genes is involved in 1 factor, or a very few factors

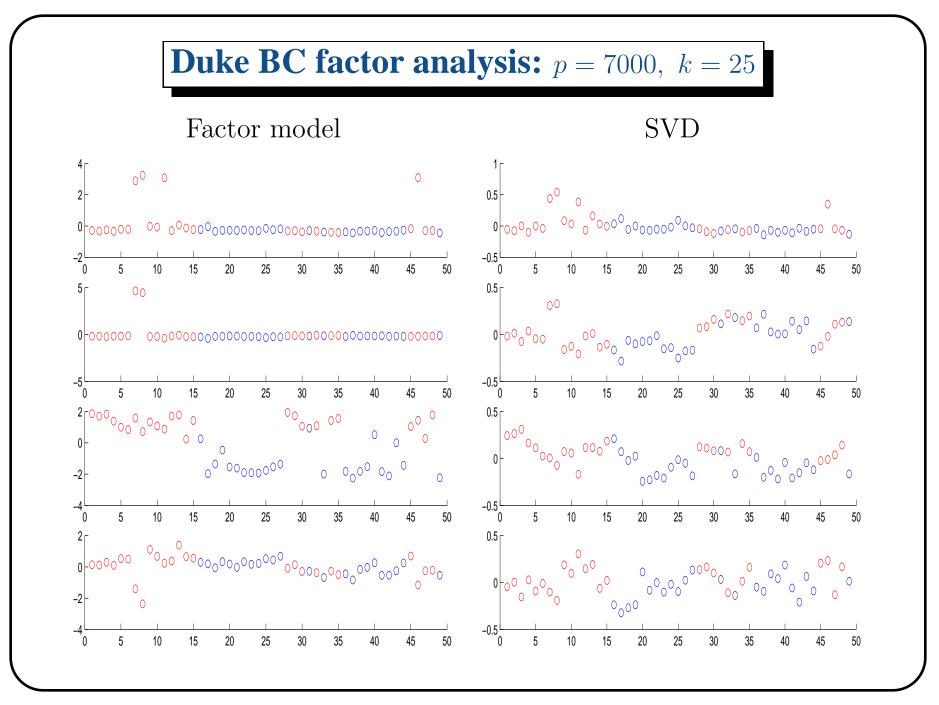
Model sparsity: many zeros in **B** 

## **Fitting sparse factor models**

- Priors on factor loadings **B** induce many zeros
- Column (factor) j: elements independent, high probability of zero
- "Strong" prior to focus on dimension reduction within factors
- Computationally (very) intensive
- Confounding difficulties with too few factors in model
- Next stages of development will involve more elaborate prior structure

#### Breast cancer example:

- Sparse factor analysis of 7000 genes, 25 factors
- Improves out-of-sample (CV) predictions in binary regressions
- ER factors Oestrogen receptor status



# **Current developments**

- Computation: Cluster-based implementations
- Mixture models for latent factors
- Gaussian process/SVM regressions with kernels in factor space
- Hierarchical factor models multiple layers
- Domain knowledge structuring priors

#### **Co-conspirators**:

Ming Liao (Duke)

Hedibert Lopes (UFRJ)

Rainer Spang (MPI, Berlin)