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SUMMARY

I discuss Bayesian factor regression models with many explanatory variables. These models
are of particular interest and applicability in problems of prediction, but also for elucidating
underlying structure in predictor variables. One key motivating application here is in studies
of gene expression in functional genomics. I first discuss empirical factor (principal compo-
nents) regression, and the use of general classes of shrinkage priors, with an example. These
models raise foundational questions for Bayesians, and related practical issues, due to the use
of design-dependent priors and the need to recover inferences on the effects of the original,
high-dimensional predictors. I then discuss latent factor models for high-dimensional variables,
and regression approaches in which low-dimensional latent factors are the predictor variables.
These models generalise empirical factor regression, provide for more incisive evaluation of fac-
tor structure underlying high-dimensional predictors, and resolve the modelling and practical
issues in empirical factor models by casting the latter as limiting special cases. Finally, I turn
to questions of prior specification in these models, and introduce sparse latent factor models
to induce sparsity in factor loadings matrices. Embedding such sparse latent factor models in
factor regressions provides a novel approach to variable selection with very many predictors.
The paper concludes with an example of sparse factor analysis of gene expression data and
comments about further research.
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1. EMPIRICAL FACTOR REGRESSION MODELS

1.1 SVD Regression

Begin with the linear model y = Xβ + ε where y is the n−vector of responses, X is the
n×p matrix of predictors, β is the p−vector regression parameter, and ε ∼ N(ε | 0, σ2I)
is the n−vector error term. Of key interest are cases when p >> n, when X is “long and
skinny.” The standard empirical factor (principal component) regression is best repre-
sented using the reduced singular-value decomposition (SVD) of X, namely X = FA
where F is the n×k factor matrix (columns are factors, rows are samples) and A is the
k×p SVD “loadings” matrix, subject to AA′ = I and F ′F = D2 where D is the diag-
onal matrix of k positive singular values, di, arranged in decreasing order. This reduced
form assumes factors with zero singular values have been ignored without loss; k ≤ n
with equality only if all singular values are positive. Now the regression transforms
via Xβ = Fθ where θ = Aβ is the k−vector of regression parameters for the factor
variables, representing a possibly massive dimension reduction from p to k parameters.
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Inherently, observing y provides information only on the underlying factor regres-
sion parameters θ, so prior specification directly in factor space has become common.
Generalised shrinkage (or ridge regression) priors on θ have become popular as MCMC
methods now permit their routine use. A particularly flexible class of such priors as-
sumes independent T distributions for the elements θ1, . . . , θk of θ, so allowing for
varying degrees of shrinkage in each of the orthogonal factor dimensions. A particular
example has θi ∼ N(θi | 0, ci/φi) where φi ∼ Ga(φi | r/2, r/2) independently, for some
r > 0; the tuning parameter r is the degree-of-freedom parameter for the implied T dis-
tribution for θi that follows on marginalisation over the random precision φi. Here the ci
are weights that may be used, for example, to indicate the prior view that higher-order
factors are expected to play lesser roles in the regression – often, though not necessarily,
the case. In the first example below this is the case, and the model uses ci = ρi−2,
with scale factor ρ to be estimated, for example. This also allows for removal of factors
in prior specification, by setting a ci to zero. Analyses typically also adopt an inverse
gamma prior for the error variance σ2.

These models are easily implemented using MCMC, with complete conditional pos-
teriors of generally standard forms. The conditional posterior for θ given the φi is
multivariate normal, and the φi are conditionally independent gamma variates given θ.
The example below utilises this to generate sequences of posterior samples for θ and
the φi.

1.2 Coherence and Inference on Original Regression Parameters

A basic modelling issue arises from the explicit design-, and sample size-, dependence
of the empirical factor model. The key θ parameter is directly defined as a function of
X and β, so parameter definition changes as the sample size and design changes; the
specification of priors over these design-dependent parameters must be coherent with
respect to changing n and X, and the question is raised of whether this can be assured.
This question is answered in Section 2.

A related practical issue is that of inference on the original regression parameters β.
The framework has priors and posteriors for θ, but leaves open questions of “inverting”
the dimension-reducing map to make inferences on β. The many-one map θ = Aβ has
multiple generalised inverses β = A′θ + b for all p−vectors b such that Ab = 0. Again,
this issue is fully resolved in Section 2. Here, simply note that, for predictive purposes,
the choice of b is irrelevant. A canonical choice of generalised inverse is the standard
“least-norm” inverse based on b = 0, i.e., β∗ = A′θ. The analysis in the example below
uses β∗; again, Section 2 explains and justifies this properly. Posterior samples for θ
trivially imply samples for β∗ which may be summarised for inference.

One interesting connection to make is that the prior on β∗ implied by the prior
on θ of Section 1.1 above is a generalisation of the g−prior of Zellner (1986). Given
conditional N(θi | 0, ci/φi) priors, the implied prior for β = β∗ is singular normal with
density proportional to exp{−β′A′GAβ/2}, where G is diagonal with elements φi/ci.
This makes explicit the design-dependency of the prior and also the individual scaling
in each of the singular factor dimensions. The Zellner g−prior corresponds to taking
G = gD2 for some positive scalar g > 0. I therefore refer to this approach as defining
a class of generalised singular g−priors (or gsg−priors).
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1.3 Prediction

Prediction is practically straightforward, though raises foundational questions related
to the design-dependency issue. Technically, response values to be predicted are simply
treated as missing values to be imputed, and the MCMC analysis is trivially extended to
sample these values at each iteration. That is, y is partitioned into a vector of training
samples, yt, and a vector of validation cases yv to be predicted; the design matrix
is conformably partitioned as [Xt; Xv]. The MCMC imputes yv from the implied
(normal) conditional posterior. This requires that the model is specified and analysed
conditional on all predictor values, including Xv, and the empirical factor regression
model is based on decomposition of the full X matrix. As a result, the factors F are
evaluated based on predictors Xv as well as Xt; thus Xv forms part of the model and
prior structure even though the corresponding responses are missing. One message is
that required predictor values must be contemplated prior to analysis, or analysis fully
repeated if new predictions are required.

Again, this apparent issue is interpreted and resolved in Section 2 where the empiri-
cal model is understood to arise from a more elaborate latent factor regression model. In
the example now, this approach is simply adopted for prediction of validation samples.

1.4 Example: Analysis of Biscuit Dough Data

This example concerns biscuit dough data analysed in Brown et al (1999), and orig-
inally in Osborne et al (1984). The study aims to predict biscuit dough constituents
based on spectral characteristics of dough measured using near infrared (NIR) spec-
troscopy. Hence the predictor for each dough sample is a reflectance spectrum on a grid
of wavelengths. The analysis here uses the same data as Brown et al (although their
framework is multivariate); these authors utilise a decision-theoretic variable selection
method, rather than shrinkage priors or factor models. The response chosen here is
fat content of dough samples, the predictors are p = 300 NIR reflectance measures at
equally spaced wavelengths over 1202 − 2400 nanometres (nm), with 39 training sam-
ples and 39 validation cases to be predicted. The fat content response is standardised,
and the predictors are centred; the centred spectra are graphed in Figure 1.
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Figure 1. Centred spectral predictors of 78 biscuit dough samples
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Several analyses have been studied, varying the tuning parameters r and ci. A
summary of analysis with r = 5 and ci = ρi−2 is given here; analyses with r between 1
and 10 give substantially similar results, and r = 5 is marginally optimal as measured
simply by the mean square prediction error computed in the validation sample. The
prior for σ−2 is unit mean exponential, reflecting the known range of the standardised
response data but otherwise representing a relatively diffuse prior, and ρ has a diffuse
prior. The singular values of the 300 × 78 matrix X decay rapidly and are truncated
to zero, with the corresponding factors dropped, past the point where 99.995% of the
total variation, as measured by the cumulative sum of squares of the di, is accounted
for; this leads to k = 16 factors in the model, with ci = 0 for i > 16. Adding more
factors, at the expense of increased computation, does not in this example improve
predictions. Further, a reduced number is consistent with the inherent smoothness of
the predictor variable, and will generally be experienced when predictors are curves.
The MCMC analysis summarised has 20,000 samples selected from a run of 100,000 by
choosing every fifth sample, and following a burn-in of 1,000 samples. Convergence is
swift and clean, consistent with experiences with a range of other examples and MCMC
experiments.

Figures 2 and 3 graph the approximate posterior means of θ and β∗ = A′θ, re-
spectively, the former with equal-tails 90% posterior intervals. Figure 3 uses asterisks
to mark the ten β∗i values with largest absolute posterior means. Of these, there is a
small cluster at just over 1700nm, at values 1718, 1722, 1726, 1730 and 1734. These are
noteworthy since, as remarked by Brown et al, this is a region where fat is known to
have a characteristic absorbance; Brown et al identify the point 1718nm too. In Figure
1 it is possible to discern small wiggles in the spectra in this wavelength region.
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Figure 2. Biscuit dough analysis: Estimates of empirical factor regression coefficients θ

Figure 4 addresses prediction and model assessment via display of data plotted
against fitted and predicted values; training data are indicated by asterisks, and vali-
dation data by circles (recall the original fat content values are standardised to define
the response variable). The close concordance between observed and fitted/predicted
values (as well as several other exploratory residual analyses, not reported) give no
reason to question model fit. Of particular interest is the fact that the out-of-sample
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predictions are very accurate indeed. In fact, on the basis of simple mean square pre-
diction errors, this analysis improves on results of Brown et al, albeit only marginally.
There is sensitivity to the tuning parameters r and the ci, and some experimentation is
needed to investigate this; the results reported are based on such experimentation and
rough optimisation over these values with respect to the predictive assessment.
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Figure 3. Biscuit dough analysis: Estimates of wavelength regression coefficients β∗
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Figure 4. Biscuit dough analysis: Response versus fitted and predicted values
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2. LATENT FACTOR REGRESSION MODELS

Formal latent factor models aim to partition variation in the predictor variables into
multiple components that reflect common patterns, and separate these from variation
that is idiosyncratic to each variable, or “noise.” Here I note the theoretical structure of
standard linear, latent factor models and define a class of factor regression models that
naturally relate underlying latent structure in high-dimensional predictors to responses.
I show that the empirical model of Section 1 arises as a limiting case, and how this
clarifies the design-dependency issues discussed in Section 1.

Write x′
i for the ith row of X and consider the latent factor model (e.g., Aguilar

and West, 2000; Lopes and West, 1999)

xi = Bλi + νi (1)

where
λi ∼ N(λi | 0, ∆2) and νi ∼ N(νi | 0, Ψ2). (2)

Here λi is a k−vector of uncertain latent factors for case i, B is a p× k factor loadings
matrix parameter, and νi is a vector of idiosyncratic noise terms; both ∆ and Ψ are
diagonal. The number of factors is fixed and k << p. With appropriate identifying
constraints on B, this is an estimable model that attributes common structure in X to
underlying k−dimensional factors, and isolates variation that is purely idiosyncratic in
the νi terms. MCMC based Bayesian analysis, and aspects of identification and prior
specification, appear in Lopes and West (1999) and, in more elaborate factor models in
time series, in Aguilar and West (2000). These two papers provide copious references
to a large literature on Bayesian factor models. Mackay and Miskin (2001) is a recent,
independent contribution that is also partly motivated by gene expression studies.

Assume that the responses y = (y1, . . . , yn)
′ relate directly to the k latent factors;

for each i,
yi = λ′

iθ + εi where εi ∼ N(εi | 0, σ
2). (3)

The original design variables xi provide information on the latent variables through
(1), but do not enter the regression; yi is conditionally independent of xi given λi. One
implication is that idiosyncratic variation in X now has no influence on the regression.

In Section 3 I discuss and exemplify analysis of the latent factor model alone; space
here precludes full development of analysis and examples of the linked factor regression
models, but it is of key interest to consider a theoretical limiting special case under the
natural prior specification θ ∼ N(θ | 0, G−1) with diagonal precision matrix G.

Equations (1-3) imply a joint normal distribution for (yi,xi,λi), and hence an
implied conditional distribution for yi given only xi and the model parameters. After
some algebra, this is

(yi |xi) ∼ N(yi |x
′
iβ, σ

2 + θ′Cθ) (4)

where β = Ψ−2BCθ with C−1 = ∆−2 + B′Ψ−2B. Clearly the implied regression of
yi on xi is linear, with a theoretically implied and unique extension of the (low-
dimensional) factor regression parameter θ to the (high-dimensional) predictor regres-
sion parameter β. Further, under the specific prior for θ, there is a unique (singular
normal) prior implied for β.

Consider now the special case in which Ψ = sI, and in which identification is
enforced by assuming B to be orthogonal. Then C is diagonal with elements s2d2

i /(s
2+

d2
i ) where the di are the elements of the diagonal matrix ∆. Now take the limit as s→ 0,



Bayesian Factor Regression Models 7

so that the latent factors explain essentially all the variation in the predictors. Then
(1) reduces to xi = Bλi or, in matrix form, X = ΛB′ where Λ has rows λ′

i. Assuming
n ≥ k, this recovers the SVD decomposition of X with B = A′, and this limiting special
case of the latent factor model defines the empirical factor model. In this limit, it also
easily follows that β = A′θ. Under the chosen prior N(θ | 0, G−1) with G diagonal, it
follows that β has precisely the gsg−prior of Section 1.2.

Hence, this special limiting case of a formal latent factor model leads to the SVD
regression and the gsg−prior. The tie-up is exact, and explains away the issues of
design-, and sample size-, dependence of the parameter and prior, and of recovering
inferences on the regression in the original predictor variables. Inference on β flows
directly from that on θ. All predictor values for validation cases must be included in
the analysis of training data as they inform, under (1), on parameters of the latent
factor model and therefore, indirectly, on values of the latent factors underlying the
training data.

3. SPARSE FACTOR MODELS

3.1 Motivating Applications in Gene Expression Profiling

Original motivation for this work comes from gene expression analysis in which
predictors are genes and p may range up to 30,000. Some of our initial studies (Spang
et al 2001; West et al 2000, 2001) involved binary regression, with a probit model
constructed by treating the yi as latent and observing only indicators of yi > 0. Logistic
and other variants are also standard extensions (Albert and Johnson, 1999, ch. 3).
This development of generalised shrinkage priors with singular factors enabled the use
of high-dimensional predictors in gene expression analysis and, in part, underlies the
interest in more formal and flexible factor models.

In gene expression profiling, the predictor variables are recorded expression levels of
individual genes, and the responses are clinical or physiological outcomes. Inherently,
multiple biological factors underlie patterns of gene expression variation, so latent factor
approaches are natural – we imagine that latent factors reflect individual biological
functions (gene networks or pathways). This is also a motivating context for sparse
models. Each biological factor involves a number of genes, perhaps a few to a few
hundred, but not all genes; so each column of B will have many zeros. Similarly, a
given gene may play roles in one or a small number of biological pathways, but will not
be involved in all; so each row of B will have many zeros. It is therefore substantively
appropriate to use priors that induce sparsity in B.

3.2 Bayesian Specification of Sparse Factor Models

A Bayesian approach to defining sparse factor structure uses priors on the elements Bij

(gene i, factor j) of B that induce zeros with high probability. Within column (factor)
j, take the Bij to be independent with priors

πjδ0(Bij) + (1 − πj)N(Bij | 0, 1)

where δ0(·) is the unit point mass at zero, and where πj has a prior heavily concentrated
near 1. Note that the unit scale of the normal component is convenient; the arbitrary
scale of factor j is already accommodated in the variance parameter d2

j . Assuming
specified priors on all model parameters, MCMC analysis extends existing approaches
that utilise normal priors on B (Aguilar and West, 2000; Lopes and West, 1999) to
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incorporate these new mixture priors, and include sampling of the πj. The analysis is
inherently parallelisable; MCMC sequences through columns of B (i.e., through fac-
tors), and within each column the (many) elements Bij are, a posteriori, conditionally
independent given values of the prior and model parameters, latent factors and data.
Hence, for fixed j, the set of p values Bij (i = 1, . . . , p), may be sampled efficiently,
in parallel. Some consideration of identification constraints is needed; we may use the
popular lower triangular method (Aguilar and West, 2000; Lopes and West, 1999, and
references therein) that simply fixes k(k + 1)/2 selected elements of B at 0 or 1, and
then use the mixture prior for the remaining (many) elements.

3.3 Example: Factors in Breast Cancer Gene Expression Data

Some illustration comes from analysis of expression levels of p = 6128 genes measured
(using Affymetrix DNA microarrays) on n = 49 breast cancer tumour samples. The
data comes from the study reported in West et al (2000, 2001) and Spang et al (2001),
where full details of the data and context may be found. Here I discuss some aspects
of a new analysis using the sparse latent factor model, with k = 25 factors. Additional
prior specifications include priors on the variances d2

j of the latent factors and the

idiosyncratic variances ψ2
i (the elements of the diagonal matrix Ψ); these are each

specified via independent Ga(· | 0.01, 0.01) priors on reciprocal variances. Finally, the
use of a prior on πj that heavily favours very high values is critical in enforcing very
many zeros in the loadings matrix; here, with p = 6128 and k = 25, analysis utilises
πj ∼ Be(πj | 999, 1).

Figure 5 displays posterior means of the values of four of the factors, chosen as
those four with largest values of the posterior means of the d2

j and plotted from the

top down. The values of the factors (vertical axis) are plotted against sample number
(horizontal axis). The first factor is essentially zero apart from on samples (tumours)
7,8,11 and 46, and the second essentially zero but for cases 7 and 8. These four cases
had been much explored in earlier analyses, and, relative to most of the data, have
quite apparent differences in large numbers of genes. The second factor shows that
cases 7 and 8 share a common pattern of covariation not exhibited by 11 and 46. These
four cases, and particularly 7 and 8, are in fact questionable due to concerns about the
quality of the DNA microarray hybridisation; in analyses in West et al (2001) cases 7
and 8 had been held out due to these data quality concerns. It is of interest here to note
that the full data analysis using the sparse factor model is itself capable of identifying
these questionable cases, and protecting inferences on other factors from their effects.

The third factor plotted is of key interest in connection with comparison of oestro-
gen receptor (ER) status of tumours. We had earlier developed binary factor regression
models to predictively discriminate ER status based on a selected set of about 50-100
genes (West et al 2000, 2001; Spang et al 2001). That analysis format is effective but
involves the pre-selection of smaller numbers of discriminatory genes, and one motivat-
ing interest in sparse factor models is the potential to automate variable selection at
the factor loading level. This potential is realised and evident here. The third factor is
color coded: red indicates ER positive tumours, blue ER negative. Factor 3 evidently
separates the two groups quite well, with four cases (16,31,40,43) in the mid-ground.
Earlier analysis using gene screening had identified these four cases, and follow-on in-
vestigations reversed the ER status determination of number 31, so the analysis is in
fact discriminating cases very well based on this factor alone.

For comparison, Figure 6 displays the four dominant empirical SVD factors (princi-
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pal components) from the 6128 genes. Factors 1 and 2 bear resemblance to those from
the model-based analysis, though the identification of questionable samples via two
“outlier factors” is significantly obscured by the confounding of idiosyncratic noise in
gene expression levels - a key inherent and limiting feature of empirical factor analyses
with many variables. The third empirical factor certainly relates to the ER discrimi-
nation, but again the signal is obscured and much less clearly defined than it is in the
model-based analysis.
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Figure 5. Four factors in sparse factor analysis of gene expression data
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4. ADDITIONAL COMMENTS

Sparse factor regression models offer a promising framework for dimension reduction
in predictor space and for regression variable selection with many predictors. If a
small number of latent factors associate with the response (as in the breast cancer ER
study, where a single factor is primarily implicated) then a sparse factor model implies
that only those genes with non-zero loadings on those factors are relevant; variable
selection is then induced, automatically. In the ER study, only 60 genes have posterior
probability of non-zero values exceeding 0.5; most of these genes show up in our prior
studies and those of other groups exploring ER pathways in breast cancer.

Full analysis of the sparse factor model combined with binary regression has been
explored in cross-validation studies of both ER and lymph node (LN) status with this
breast cancer data, comparing with results in West et al (2001). This prior work uses
gene selection/screening and SVD factor regression. The cross-validation predictions
are very similar, perhaps even slightly better with the sparse factor model. I stress that
this model uses all 6128 genes whereas our prior published analysis selects 100 based
on correlation with ER or LN status, so removing noise via ad-hoc preliminary variable
selection. The comparability of predictions is very strong evidence for the efficacy of
the sparse modelling approach in dealing formally – and automatically – with that most
critical and challenging variable selection problem. Further development and experience
with this approach is needed; a key need is the development of efficient software for
distributed processing to address the very challenging computational demands of model
fitting.

Additional questions concern the incorporation of substantive, informative prior in-
formation into these large-scale models. This raises questions of both how flexible the
current models are in terms of the scope for customising them to incorporate specific
prior information, and of how they might be generalised. A further key question is the
identification, or estimation, of the number of factors. In some studies, simply increas-
ing k and exploring posterior estimates of factors and their variances suffices (Aguilar
and West, 2000), though the problem remains an open research area and utilising for-
mal approaches is a challenge (Lopes and West, 1999). This question is discussed also
by Mackay and Miskin (2001). In the new sparse factor model introduced here, using
too few factors confounds higher-order structure in the factors being estimated and, in
particular, induces likelihood functions that very strongly suggest non-zero factor load-
ings for many gene-factor combinations than might be expected on scientific grounds;
this seems to be simply an artifact of the use of too few factors. Though simple to
diagnose, this problem is far from simple to resolve as fitting large numbers of factors
is significantly challenging in terms of computation.
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