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The Dirichlet process

Consider a space © and a o-field B of subsets of ©. Following Ferguson (1973), a
random probability measure, or equivalently a random distribution function, G on (©, B)
follows a Dirichlet process DP(v(Gy) if, for any finite measurable partition, By,...,B, of O,
the distribution of the random vector (G(By).,....G(B,)) is Dirichlet(vGy(Bh),....vGo(B;)),
where G(B;) and Gy(B;) denote the probability of set B; under G and G, respectively.
Hence the Dirichlet process is characterized by two parameters, Gy a specified distribution
on (O©,B) and v a positive scalar parameter. In fact, since for any B € B, E(G(B)) =
Go(B) and Var(G(B)) = {Go(B)(1 — Go(B))}/(v + 1), Gy is viewed as the center of the
process while v can be interpreted as a precision parameter; the larger v is the closer we
expect a realization from the process to be to Gy. vGy is referred to as the base measure of
the process.

The standard criticism of the Dirichlet process is that it places all of its mass on the
subset of discrete distributions on © (Ferguson, 1973, Blackwell, 1973). This property
becomes evident if we consider the constructive definition of the Dirichlet process provided
by Sethuraman and Tiwari (1982) and Sethuraman (1994). Specifically, let {z,, s = 1,2,...}
and {6;, j = 1,2,...} be independent sequences of independent identically distributed (i.i.d.)
random variables such that 2z, ~ Beta(1,v) and §; ~ Go. Then if we define w; = z; Hi:(lf
zs), j = 1,2...., whence Zjozl w; = 1, a realization G' from DP(rGy) is almost surely of the

form
G=> w;dy,, (1)
7=1

where §, denotes the measure giving mass 1 to the point a. Another limitation of the
Dirichlet process stems from the fact that it assigns negative correlation between G(B;) and
G(Bj) for any disjoint pair of B;, B; € B, an immediate consequence of a property of the

Dirichlet distribution. This feature might be counter-intuitive in certain applications.



Prior to posterior updating using Dirichlet process priors is attractively straightforward.
In particular, Ferguson (1973) proved that if § = {0;, i = 1,...,n} is an i.i.d. sample from G
and a priori G ~ DP(vGy), then the posterior distribution of G given the data 6 is again a
Dirichlet process DP(v*G) with v* = v + n and G§ = (v + n) 1 (vGy + Y., ;). Note
that as v tends to 0 (corresponding to a noninformative prior specification for G) the Bayes
estimate for (G, under integrated squared error loss, converges to the empirical distribution
function of the sample which is the classical nonparametric estimator and also forms the
basis for the Bayesian bootstrap (Rubin, 1981).

Further clarification for the Dirichlet process has been provided by the work of various
authors on its theoretical properties and characterizations. Some of the related references
are Blackwell and MacQueen (1973), Fabius (1973), Korwar and Hollander (1973), James
and Mosimann (1980), Hannum, Hollander and Langberg (1981), Doss and Sellke (1982),
Sethuraman and Tiwari (1982) and Lo (1983, 1991). The mean functional x(G) = [ 0G(d8),
with G ~ DP(vG)), has received special attention. This is an almost surely finite random
variable provided Gg has finite first moment. Its distribution has been studied by Hannum,
Hollander and Langberg (1981), Yamato (1984), Cifarelli and Regazzini (1990) and Diaconis
and Kemperman (1996).

Regarding inference based on Dirichlet process priors, Ferguson (1973), apart from esti-
mation for the unknown distribution function, presented a few other applications including
estimation of the mean, variance and quantiles of the distribution. He also considered hy-
pothesis testing involving quantiles and estimation of P(X < Y') assigning independent
Dirichlet process priors to the distribution functions of X and Y. The Mann-Whitney
statistic (see, e.g., Randles and Wolfe, 1979) arises naturally in the latter case. Susarla and
van Ryzin (1976, 1978) and Blum and Susarla (1977) extended the results of Ferguson on
estimation of the distribution function (equivalently the survival function) based on right
censored data. The Kaplan-Meier estimator is a limit of the resulting Bayes estimate under
integrated squared error loss, again, when the precision parameter tends to 0. Treatments
of the same problem but under a dependent censoring mechanism have been carried out
by Phadia and Susarla (1983) and Tsai (1986). The case of grouped data was handled by
Johnson and Christensen (1986). Incorporation of covariate information through the accel-

erated failure time model was considered by Christensen and Johnson (1988), employing



a semi-Bayesian approach for censored data, and Johnson and Christensen (1989) using a
fully Bayesian approach in the absence of censoring. The use of Gibbs sampling (Gelfand
and Smith, 1990) to provide full inference from doubly censored data was illustrated in Kuo
and Smith (1992). The Dirichlet process has also found wide applicability as a prior for the
tolerance distribution, or potency curve, in Bayesian bioassay. We refer to Ramsey (1972),
Antoniak (1974), Bhattacharya (1981), Disch (1981), Ammann (1984) and Kuo (1983, 1988)
for point estimates and various approximations to the associated posteriors, and Gelfand
and Kuo (1991), Kottas, Branco and Gelfand (2000) and Mukhopadhyay (2000) for richer
inference through the use of MCMC methods. For other Bayesian analyses with Dirichlet
process priors see Campbell and Hollander (1978) for rank order estimation, Breth (1978,
1979) for construction of confidence bands for the distribution function and interval esti-
mates for the associated mean and quantiles, Johnson, Susarla and van Ryzin (1979) in
estimation for distribution functions of a branching process, Lo (1981) for an application
to shock models and wear processes, Binder (1982) and Lo (1986) with regard to sampling
from finite populations, Dalal and Phadia (1983) for estimation of a measure of dependence
for bivariate distributions and Tamura (1988) in the context of statistical auditing. An
extensive review of the work on the Dirichlet process, including additional references up to
1990, can be found in Ferguson, Phadia and Tiwari (1992).

Dalal (1979a) introduced the Dirichlet invariant process, an extension of the Dirichlet
process, and used it to infer about the location parameter of a symmetric distribution
(Dalal, 1979b). Diaconis and Freedman (1986a, b) were concerned with the consistency of
the Bayes estimate of this parameter proving that it can be inconsistent for certain prior
choices. See also Freedman and Diaconis (1983) for related work including discussion for
Dirichlet process priors. Other variants of the Dirichlet process can be found in Doss (1985a,
b), Newton, Czado and Chappell (1996), including applications to median estimation and
binary regression, respectively, and Muliere and Tardella (1998) who defined the e-Dirichlet
process an approximation to the Dirichlet process suggested by its almost sure representation
given in (1). Finally, the recent work of MacEachern (2000) on dependent Dirichlet processes
holds promise since it can provide flexible modeling for a collection of dependent random

distributions with direct applications in regression problems.



