1 Gaussian Processes

Definition 1.1 A Gaussian process $\{x_i\}$ over sites i is defined by its mean function

$$E(x_i) = \mu_i$$

and its covariance function

$$c_{ij} = \operatorname{Cov}(x_i, x_j)$$

plus joint normality of the finite dimensional distributions.

Hence x restricted to the points labelled by $1, \ldots, n$ is $(x_1, \ldots, x_n)^T$ and it has a n-variate Gaussian distribution $N(\mu, \Sigma)$, where $\mu = (\mu_1, \ldots, \mu_n)^T$ and $\Sigma = (c_{ij})$. Note that the covariance function c_{ij} must be positive definite (ie. any covariance matrix created from a finite dimensional set of x_i 's must be positive definite: $a^T \Sigma a > 0$, for any non-zero vector a).

Covariance functions The restriction that the function $\{c_{ij}\}$ be positive definite can make the search for valid covariance functions difficult. Most covariance functions model covariance between sites i and j as a function of distance between the two sites $d_{ij} = \operatorname{dist}(i, j)$, where $\operatorname{dist}(i, j)$ is typically Euclidean distance, or a simple modification of it. Hence $c_{ij} = C(d_{ij})$. It is standard to choose from a number of parameterized covariance functions, often called covariograms, listed below:

• Power family

$$C(d|\theta, p) = \theta_1 \exp\{-|d/\theta_2|^p\}, \ 0$$

Two notable covariograms in this family are the exponential (p = 1) and the Gaussian (p = 2).

• Spherical

$$C(d|\theta) = \begin{cases} \theta_1 \left[1 - \frac{2}{\pi} \left(\frac{d}{\theta_2} \sqrt{1 - \frac{d}{\theta_2}} + \sin^{-1} \frac{d}{\theta_2} \right) \right] & \text{for } d < \theta_2 \\ 0 & \text{for } d \ge \theta_2 \end{cases}$$

For the spherical covariogram, if i and j are separated by a distance greater than θ_2 , x_i and x_j are independent.

• Matérn

$$C(d|\theta) = \theta_1 \frac{1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{2\sqrt{\theta_3}d}{\theta_2} \right)^{\theta_3} \mathcal{K}_{\theta_3} \left(\frac{2\sqrt{\theta_3}d}{\theta_2} \right)$$

where θ_2 is a scale parameter and θ_3 is a shape parameter, and $\mathcal{K}()_{\theta_{\ni}}$ is a modified Bessel function of the third kind of order θ_3 (Abramowitz and Stegun 1964, Chapter 9).

Why positive definite? Consider the power covariogram for large p. This makes the covariogram look like a step function $C(d) = I[0 \le d \le 1]$. So if sites 1,2,3 lie on a line with spacing $\frac{1}{2}$, then $Cov(x_1, x_2) = Cov(x_2, x_3) = 1 \Rightarrow x_1 = x_2 = x_3$, but C(d = 1) requires that $Cov(x_1, x_3) = 0$, which is a contradiction. Such a difficulty can occur for any p > 2.

Example: Gaussian random walk Let $x = (x_0, x_1, x_2, x_3, ...)^T$ be a Gaussian process defined on the integers $\{0, 1, 2, 3,\}$ such that

$$x_0 \equiv 0$$
, $x_i | x_{i-1} \sim N(x_{i-1}, 1)$, for $i = 1, 2, 3, ...$

 $\boldsymbol{x} = (x_0, x_1, x_2, x_3, x_4)^T$ has density:

$$\pi(x) = (2\pi)^{-\frac{4}{2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{4} (x_i - x_{i-1})^2\right\}, \ x_0 = 0$$

$$= (2\pi)^{-\frac{4}{2}} \exp\left\{\begin{pmatrix} (x_0 & x_1 & x_2 & x_3 & x_4) \\ -\frac{1}{2} & \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right\}, \ x_0 = 0$$

$$= (2\pi)^{-\frac{4}{2}} \exp\left\{-\frac{1}{2}x^T W x\right\}, \ x_0 = 0$$

Alternatively, we can compute the means, variances and covariances of x using standard covariance formulas since $x_i = \sum_{j=1}^{i} z_j$ where the z_i 's are iid N(0,1) random variables. Thus:

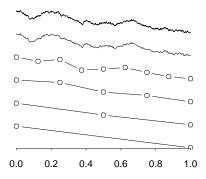
$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 3 & 3 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} \rangle \sim N(\mathbf{0}, \Sigma).$$

Note that this distribution is degenerate since $x_0 = 0$. So the rank of Σ is only 4. One can check that W is a generalized-inverse of Σ .

The covariance function of this process is:

$$Cov(x_i, x_j) = min(i, j) = i \land j$$

One can imagine defining a random walk on a grid with twice the density using increments with half the variance. The resulting covariogram on the integers would be exactly the same. The figure below shows a random walk on a successively finer grid.



The limiting process $\{x_t\}$ is called *Brownian motion*. It is defined over $t \geq 0$, it's continuous, and it is characterized by its mean function $Ex_t = 0$ and its covariance function $Cov(x_t, x_s) = t \wedge s$.

Note that the covariance function cannot be written as a function of distance here. In fact, $\operatorname{Var} x_t = t$, so the process $\{x_t\}$ isn't even stationary. A process $\{x_t\}$ is said to be stationary if the distribution of a finite dimensional restriction of $\{x_t\}$ is unchanged if the process is translated over space (ie. $(x_{t_1}, \ldots, x_{t_n}) \stackrel{d}{=} (x_{t_1+s}, \ldots, x_{t_n+s})$ for any s in the case of Brownian motion). The random walk is an example of an intrinsicly stationary process – because the increments are all iid. Such processes can be characterized by their variograms, which give the variance of all pairwise differences. When the variance of any pair (x_i, x_j) depends only on the distance d_{ij} between sites i and j we can characterize the process $\{x\}$ with a variogram denoted by $2\gamma(d_{ij})$. For historical reasons $\gamma(d)$ is called the semi-variogram, and the variogram is defined to be $2\gamma(d)$. For the random walk

$$Var(x_i - x_j) = 2\gamma(d_{ij}) = |i - j|$$

In the example here, knowing the variogram doesn't completely specify the distribution of $\{x\}$. For example, the random walk process where $x_0 = 0$ has exactly the same variogram as does the process with $x_0 = 1$. However, as long as one of the x_i 's (or more) are known, then the distribution for the remaining components of $\{x\}$ is completely specified.

The Variogram

Definition 1.2 A Gaussian process $\{x_i\}$, is said to have a variogram if $Var(x_i - x_j)$ is a function of distance d_{ij} between sites i and j. We use $2\gamma(d_{ij})$ to denote the variogram.

$$2\gamma(d_{ij}) = Var(x_i - x_j)$$

If a process $\{x_i\}$ has a covariogram, then the two functions are related by

$$\gamma(d) = C(0) - C(d)$$

$$C(d) = \gamma(\infty) - \gamma(h)$$

If $\{x_i\}$ has a variogram, but the covariogram doesn't exist, we can compute a covariance function by conditioning on the event $x_0 = 0$.

$$2\gamma(d_{ij}) = \operatorname{Var}(x_i - x_j) = \operatorname{Var}(x_i - x_j | x_0 = 0)$$

$$= \operatorname{Var}((x_i - x_0) - (x_j - x_0) | x_0 = 0)$$

$$= \operatorname{Var}(x_i - x_0) + \operatorname{Var}(x_j - x_0)) - 2\operatorname{Cov}(x_i - x_0, x_j - x_0 | x_0 = 0)$$

$$= 2\gamma(d_{i0}) + 2\gamma(d_{i0}) - 2\operatorname{Cov}(x_i, x_j | x_0 = 0)$$

Thus one gets

$$Cov(x_i, x_j | x_0 = 0) = \gamma(d_{i0}) + \gamma(d_{j0}) - \gamma(d_{ij})$$

This is one way of obtaining Σ in the random walk example. In fact using $\Sigma_{ij} = c - \gamma(d_{ij})$ will give a valid covariance matrix provided c is sufficiently large.

One example of a Gaussian process which has a variogram, but not a covariogram is a generalized Brownian motion process:

• Power variogram:

$$\gamma(d) \propto d^p, \ 0$$

For the case p = 1, this is general Brownian motion.

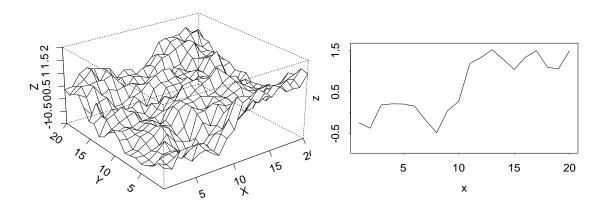
• 2-d Thin plate spline

$$\gamma(d) \propto d^2 \log d$$

Sample realizations:

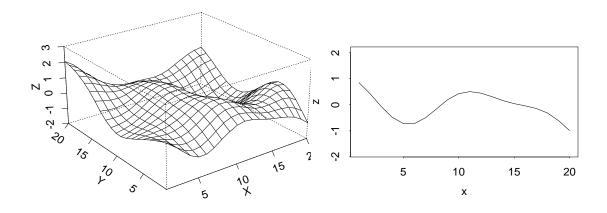
$$C(d) \propto \exp\{-d/\sigma\}, \text{ here } \sigma = 25$$

exponential covariogram



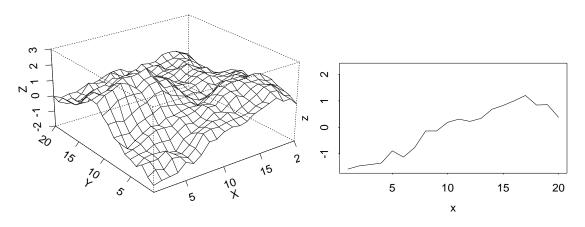
$$C(d) \propto \exp\{-(d/\sigma)^2\},$$
 here $\sigma = 6$

random realization - Gaussian covariogram



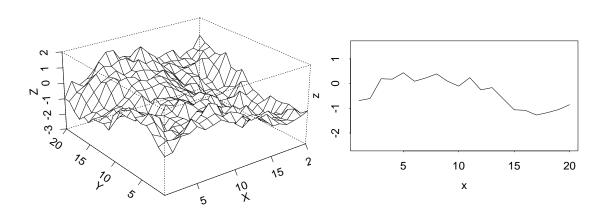
$$C(d) \propto \exp\{-(d/\sigma)^{1.5}\},$$
 here $\sigma = 9$

random realization - $C(d) = exp(-d^1.5)$



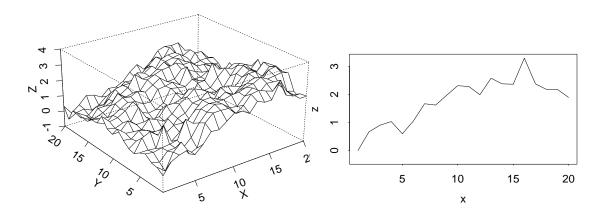
$$C(d) \propto 1 - \frac{2}{\pi} \left(\frac{d}{\sigma} \sqrt{1 - \frac{d}{\sigma}} + \sin^{-1} \frac{d}{\sigma} \right) \text{ here } \sigma = 9$$

random realization - spherical



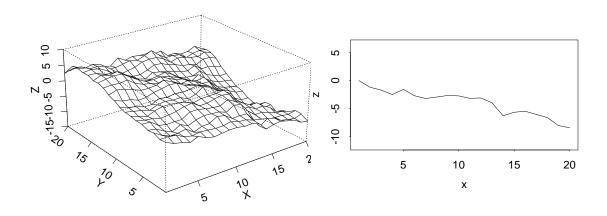
$$\gamma(d) \propto d/\sigma$$
, here $\sigma = 5$

random realization - Brownian motion p=1



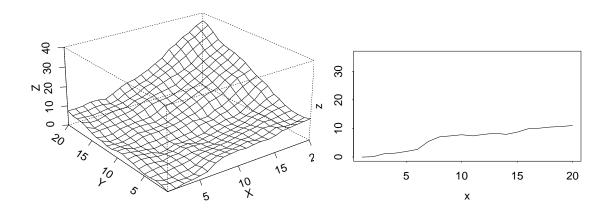
$$\gamma(d) \propto (d/\sigma)^{1.3}$$
, here $\sigma = 5$

random realization - Brownian motion p=1.3



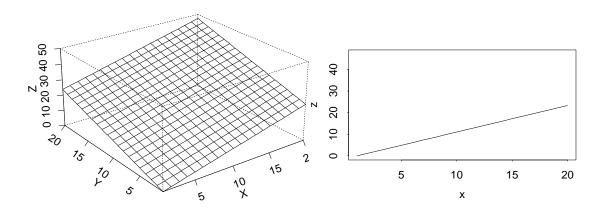
$$\gamma(d) \propto (d/\sigma)^{1.7}$$
, here $\sigma = 5$

random realization - Brownian motion p=1.7



$$\gamma(d) \propto (d/\sigma)^{2.0}$$
, here $\sigma = 5$

random realization - Brownian motion p=2.0



2 Interpolation

Given a set of points $\{1, 2, ..., n\}$ on a line or in a plane and their values $x_1, x_2, ..., x_n$ one can fit an interpolating surface just by choosing a covariogram or variogram model.

1. Assume the surface is a realization from a Gaussian field with a specified covariance function.

2. Compute the conditional mean of the process given the observed sites. This is the interpolating surface.

Here's the recipe:

- Suppose the process $\{x_1, \ldots, x_n\}$ is observed. Now suppose you wish to find the interpolating surface $\{x_{n+1}, \ldots, x_{n+m}\}$ at the sites $\{n+1, \ldots, n+m\}$.
- Assume

$$x = (x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})^T \sim N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix}\right)$$

where the elements of Σ are determined by the covariogram or variogram model.

• The conditional distribution of $(x_{n+1}, \ldots, x_{n+m})$ given x_1, \ldots, x_n is:

$$(x_2|x_1) = ((x_{n+1}, \dots, x_{n+m})|(x_1, \dots, x_n)^T) \sim N\left(\mu_2 + \sum_{1} \sum_{1}^{-1} (x_1 - \mu_1), \sum_{1} \sum_{1}^{-1} \sum_{1} \sum_{1}^{-1} (x_1 - \mu_1), \sum_{1} \sum_{1}^{-1} \sum_{1} \sum_{1}^{-1} \sum_{1} \sum_{1}^{-1} (x_1 - \mu_1), \sum_{1} \sum_{1}^{-1} \sum_{1}^{-1} \sum_{1} \sum_{1}^{-1} \sum_{1$$

Note: if we re-express things in terms of precisions, then for

$$x = (x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})^T \sim N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}^{-1}\right)$$

we have

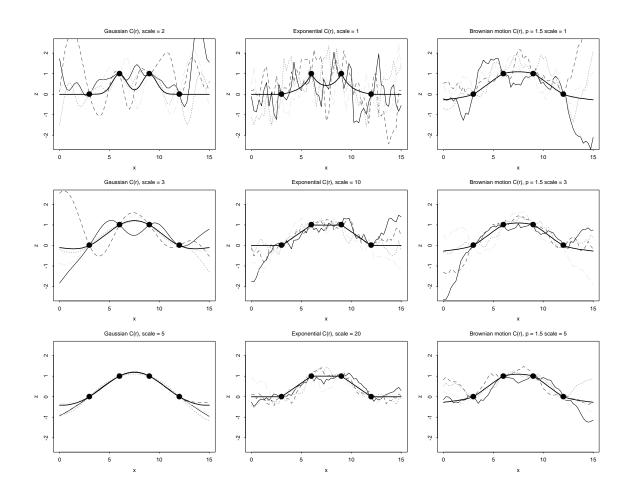
$$(x_2|x_1) = ((x_{n+1}, \dots, x_{n+m})|(x_1, \dots, x_n)^T) \sim N\left(\mu_2 + W_{22}^{-1}W_{21}(x_1 - \mu_1), W_{22}^{-1}\right).$$

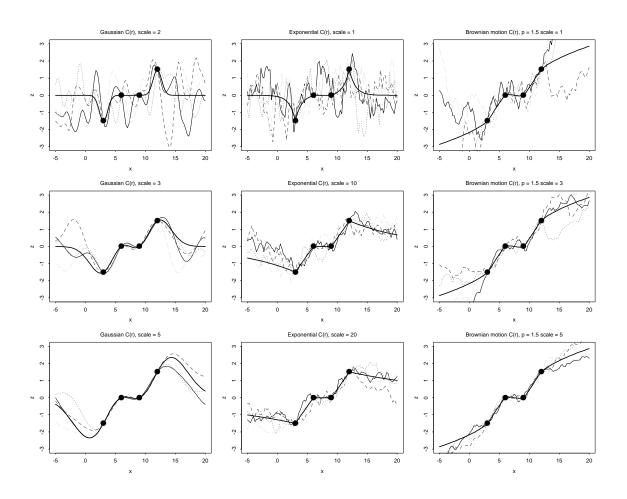
• Define the interpolant to be the mean of x_2 given the observations x_1 :

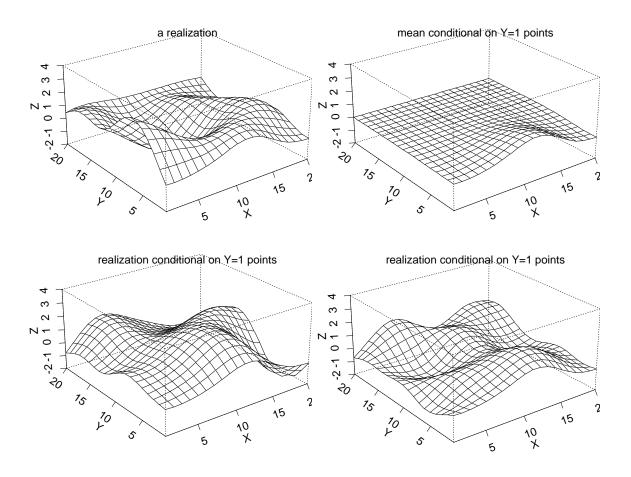
$$\mu_{22\cdot 1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1)$$

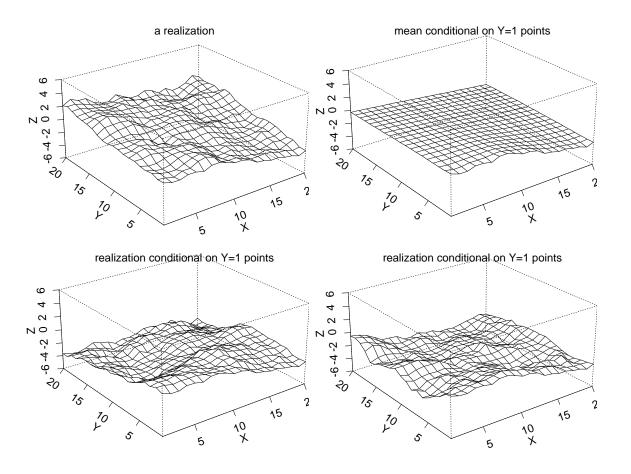
• If $\{x_i\}$ really did follow a Guassian process with the specified mean and covariance function, then the standard error of the enterpolant at x_j would be the jj component of $\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$. We'll look at estimating parameters of the covariogram/variogram later. The conditional mean is the "optimal" interpolator under mean squared error loss.

Some examples:





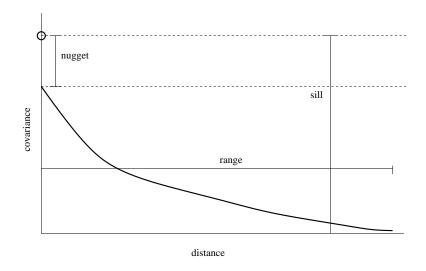




3 A closer look at the covariogram

There are a number of features of a variogram/covariogram that are worth noting. It is also of use to understand how properties of the covariogram affect the resulting spatial process.

- range
- scale
- nugget



Examples:

- White noise process
- Effects of the "nugget" on the conditional distribution
- Effects of the range on the conditional distribution
- Effects of $\gamma'(0+)$ on the conditional distribution

4 Estimating the variogram

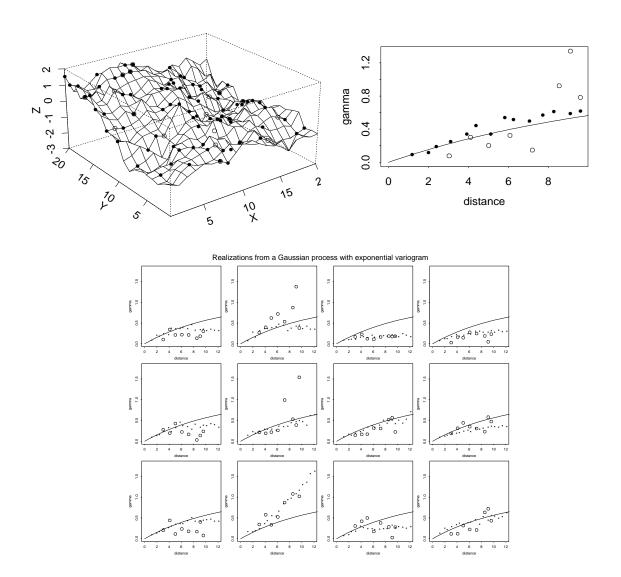
Given an observed set of points x_1, \ldots, x_n at locations $1, \ldots, n$ one may wish to estimate various properties of the variogram governing their covariance. This can be done graphically using the empirical variogram.

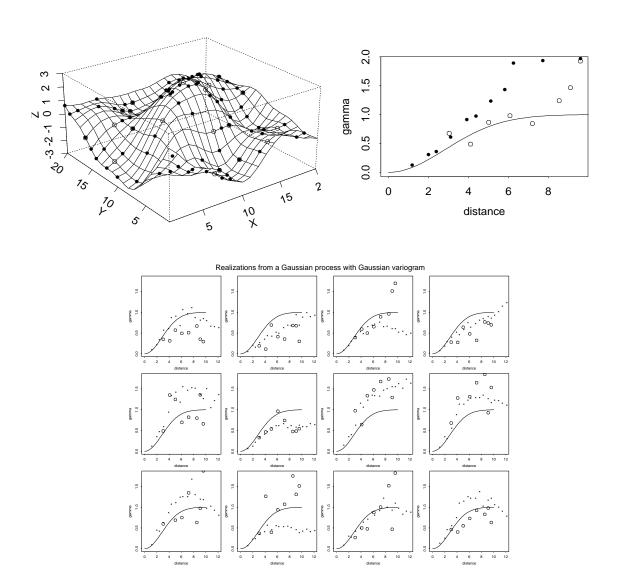
Definition 4.1 The empirical variogram is determined by discretizing distance into a n_d bins and then estimating

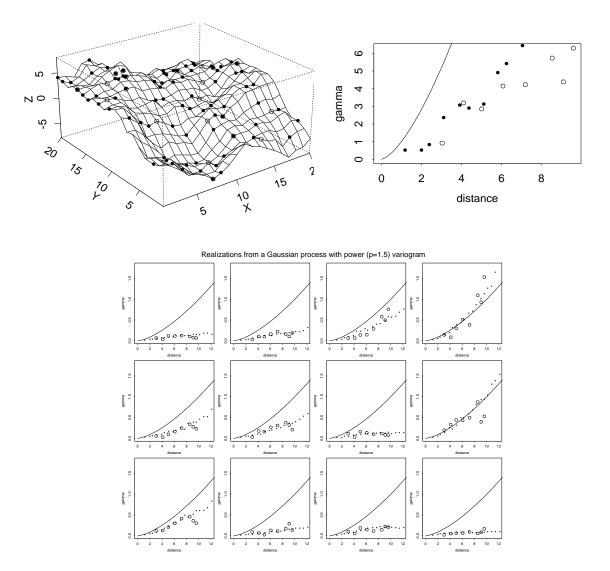
$$\hat{\gamma}(d) = \frac{1}{2N_d} \sum_{(i,j) \in d_{\Delta}} (x_i - x_j)^2$$

where d_{Δ} is the set of all pairs (i, j) such that the distance between i and j is within Δ of d and N_d is the number of pairs in d_{Δ} .

Note this estimate can be somewhat unreliable. What follows is a number of surfaces and their empirical variograms derrived from x_1, \ldots, x_n , which were sampled uniformly from the 400 points making up a 20×20 lattice.







- What features of $\gamma(d)$ are important to capture
- Fitting a variogram model to the empirical variogram
 - 1. Least squares: Choose θ so that

$$\sum_{k} (\gamma(d_k|\theta) - \hat{\gamma}(d_k))^2$$

is minimized.

2. Weighted least squares: Choose θ so that

$$\sum_{k} w_{k} (\gamma(d_{k}|\theta) - \hat{\gamma}(d_{k}))^{2}$$

is minimized. Weights w_k may be chosen to be proportional to the number of pairs in each bin N_d . This will put more weight on pairs that are closer together.

3. Maximum likelihood: Suppose

$$y \sim N(\mu, \Sigma(\theta)),$$

then we can estimate μ and θ by the values $\hat{\mu}$ and $\hat{\theta}$ that maximize the likelihood:

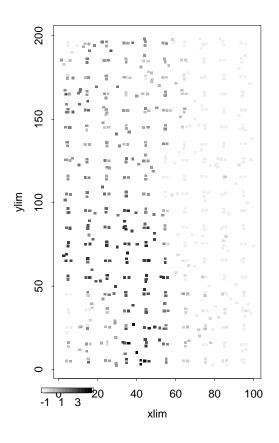
$$L(\mu, \theta | y) \propto |\Sigma(\theta)|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(y - \mu)^T \Sigma(\theta)(y - \mu)\right\}$$

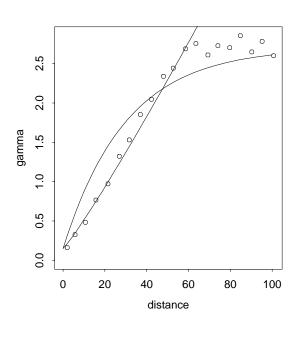
A variant of maximum likelihood is restricted maximum likelihood (REML) which uses a slightly modified version of the likelihood.

- 4. Bayesian estimation. Specify prior distributions for μ and θ and use the posterior mean or posterior mode to estimate θ .
- Anisotropy $d' = \Lambda Rd$. Transform euclidean distance thru a rotation $R(\theta)$ and a stretching/shrinking of the principle axes via Λ . These additional parameters may be absorbed in θ for estimating the variogram parameters.

Example: Piazza Road Superfund site.

log dioxin concentrations from Pilot Road site





One can estimate the variogram parameters by eye, using ML or REML, or better yet, a Bayesian approach. Use the interpolation formulas of Section 2 to estimate the concentration at unobserved sites.

Modeling spatial data **5**

$$y = X\beta + z + e$$

where $X\beta$ absorbs standard linear model terms, z absorbs the spatial trend, and e is a white noise term.

examples

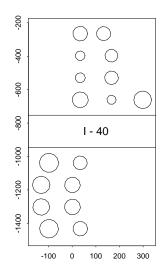
- Agricultural field trials.
- rainfall estimation
- environmental monitoring
- imaging

Observed data: $y = (y_1, \dots, y_n)^T$ Unobserved spatial trend: $z = (z_1, \dots, z_n)^T$

Covariates: X

Some equivalent formulations:

An example: Researchers want to know how carbon concentrations in a stream differ on two different sides of a culvert on I-40. Concentrations are measured at 9 upstream locations and 8 downstream locations and are given in the figure below. Is there evidence that the culvert is associated with differences in carbon concentration?



Here we can model the 17 measurements by

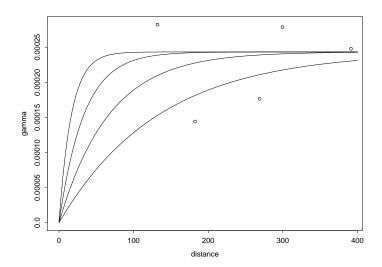
$$y \sim N(\mu + \alpha_i, \sigma_e^2 I + \Sigma(\theta))$$

where α_i , i = 1, 2, denotes the upstream or downstream measurements. So the question can be put in statistical terms, does $\alpha_1 = \alpha_2$?

It turns out it depends on what covariance function is specified. If an exponential covriance function is used, then the inference depends on the specified range:

significance by range:

dist	0	50	100	200	400
corr of nearest	0	.0	. 1	.2	.5
p-value	.01	.01	.02	.06	.30
diff*10^2	.99	.99	.98	.92	.75



One could rely on maximum likelihood to specify the parameters of the exponential distribution. In fact it fits a covariance that is nearly all nugget effect (ie. no spatial dependence). However the uncertainty about the covariance parameters are unaccounted for.