1 Gaussian Processes

Definition 1.1 A Gaussian process {z;} over sites i is defined by its mean function
E(x;) = pi
and its covariance function
Cij = COV(IZ', ZL’j)

plus joint normality of the finite dimensional distributions.

Hence z restricted to the points labelled by 1,...,nis (z1,...,2,)" and it has a n-variate
Gaussian distribution N(u, ), where u = (g1, ..., pn)? and ¥ = (c;;). Note that the covari-
ance function ¢;; must be positive definite (ie. any covariance matrix created from a finite
dimensional set of z;’s must be positive definite: a”Xa > 0, for any non-zero vector a).

Covariance functions The restriction that the function {c;;} be positive defi-
nite can make the search for valid covariance functions difficult. Most covariance functions
model covariance between sites ¢ and j as a function of distance between the two sites
d;; = dist(, 7), where dist(¢, j) is typically Euclidean distance, or a simple modification of
it. Hence ¢;; = C(d;;). It is standard to choose from a number of parameterized covariance
functions, often called covariograms, listed below:

e Power family
C(d|0,p) = O1exp{—1|d/0:"}, 0 <p <2

Two notable covariograms in this family are the exponential (p = 1) and the Gaussian
(p=2).

e Spherical

C(d|f) = { 0r[1-2 (41— L+sin ' )] ford <6y

0 for d > 6,

For the spherical covariogram, if ¢ and j are separated by a distance greater than 65,
x; and z; are independent.

e Matérn

C(d|o) = 6,
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where 60, is a scale parameter and 03 is a shape parameter, and IC()g, is a modified
Bessel function of the third kind of order #3 (Abramowitz and Stegun 1964, Chapter
9).



Why positive definite? Consider the power covariogram for large p. This makes
the covariogram look like a step function C(d) = I[0 < d < 1]. So if sites 1,2,3 lie on a line
with spacing %, then Cov(xy,xe) = Cov(we,z3) = 1 = 27 = 29 = x3, but C(d = 1) requires
that Cov(xy,z3) = 0, which is a contradiction. Such a difficulty can occur for any p > 2.

Example: Gaussian random walk Let © = (wg, 21,70, 73,...)7 be a Gaussian
process defined on the integers {0, 1,2, 3, ....} such that

xg =0, zi|lxig ~ N(zi_q1,1), fori=1,2,3,...

x = (29,1, To, v3, 24)7 has density:

m(z) = (27) Zexp {—% > (xi — xi_l)z} , T =10

i=1

(ZL’O 1 X2 T3 T4 ) 1 -1 0 0 0 Zo
“1 2 -1 0 0]|[mx
— (21) 7exp{ -1 0 -1 2 =1 0||a|}, 20=0
0 0 -1 2 —1]|]as
0 0 0 -1 1/ \a

= (2m) Zexp {—%xTWx} , 1o =0

Alternatively, we can compute the means, variances and covariances of x using standard
covariance formulas since z; = >%_; z; where the z;’s are iid N(0,1) random variables.

Thus: =
xo 0 00 0 0O
X 0 01 1 11
zml~N|lo[,]o 1 2 2 2|]|~N(0,).
X3 0 01 2 3 3
T4 0 01 2 3 4
Note that this distribution is degenerate since o = 0. So the rank of ¥ is only 4. One can

check that W is a generalized-inverse of X..

The covariance function of this process is:
Cov(z;, z;) =min(i,j) =i A j

One can imagine defining a random walk on a grid with twice the density using increments
with half the variance. The resulting covariogram on the integers would be exactly the same.
The figure below shows a random walk on a successively finer grid.
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The limiting process {z;} is called Brownian motion. It is defined over ¢ > 0, it’s continuous,
and it is characterized by its mean function Ez; = 0 and its covariance function Cov(x;, zs) =
tAs.

Note that the covariance function cannot be written as a function of distance here. In fact,
Varz; = t, so the process {z:} isn’t even stationary. A process {x;} is said to be stationary
if the distribution of a finite dimensional restriction of {x;} is unchanged if the process is
translated over space (ie. (zy,...,2y,) L (Tgy1sy- -5 T4, 1) for any s in the case of Brownian
motion). The random walk is an example of an intrinsicly stationary process — because the
increments are all iid. Such processes can be characterized by their variograms, which give
the variance of all pairwise differences. When the variance of any pair (z;,z;) depends
only on the distance d;; between sites ¢ and j we can characterize the process {z} with a
variogram denoted by 27(d;;). For historical reasons 7(d) is called the semi-variogram, and
the variogram is defined to be 2y(d). For the random walk

Var(z; — x;) = 2v(dy;) = |i — j

In the example here, knowing the variogram doesn’t completely specify the distribution of
{z}. For example, the random walk process where zy = 0 has exactly the same variogram
as does the process with xy = 1. However, as long as one of the z;’s (or more) are known,
then the distribution for the remaining components of {z} is completely specified.O

The Variogram

Definition 1.2 A Gaussian process {z;}, is said to have a variogram if Var(x; — x;) is a
function of distance d;; between sites i and j. We use 2y(d;;) to denote the variogram.

2vy(dyy) = Var(z; — x;)
If a process {z;} has a covariogram, then the two functions are related by

1(d) = C(0)-C(d)
C(d) = ~(oo) —v(h)



If {x;} has a variogram, but the covariogram doesn’t exist, we can compute a covariance
function by conditioning on the event xy = 0.

2v(d;;) = Var(z; — z;) = r(z; — xj|zrg = 0)
r((zi — o) — (2 — mo)|zo = 0)
r(z; — xo) + Var(x; — z9)) — 2Cov(x; — xo, x; — Zo|zo = 0)

= 29(di) + 2v(djo) — 2Cov(x;, xj|xg = 0)
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Thus one gets

Cov(z;, xj|lrg = 0) = y(dio) + v(djo) — v(dij)
This is one way of obtaining ¥ in the random walk example. In fact using ¥;; = ¢ — v(d;)
will give a valid covariance matrix provided c is sufficiently large.

One example of a Gaussian process which has a variogram, but not a covariogram is a
generalized Brownian motion process:

e Power variogram:
Y(d) ocd’, 0 <p <2

For the case p = 1, this is general Brownian motion.

e 2-d Thin plate spline
v(d) o< d*log d

Sample realizations:



C(d) x exp{—d/o}, here o =25

exponential covariogram
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C(d) < exp{—(d/c)**}, here c =9

random realization - C(d) = exp(-d"1.5)
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v(d) < d/o, here c =5

random realization - Brownian motion p=1

v(d)  (d/o)*?, here 0 =5

random realization - Brownian motion p=1.3
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v(d) < (d/a)*", here o0 =5

random realization - Brownian motion p=1.7
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v(d)  (d/a)*°, here 0 =5

random realization - Brownian motion p=2.0
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2 Interpolation
Given a set of points {1,2,...,n} on a line or in a plane and their values x1, zs, ..., x, one

can fit an interpolating surface just by choosing a covariogram or variogram model.

1. Assume the surface is a realization from a Gaussian field with a specified covariance
function.



2. Compute the conditional mean of the process given the observed sites. This is the
interpolating surface.

Here’s the recipe:

e Suppose the process {z1,...,x,} is observed. Now suppose you wish to find the inter-
polating surface {Z,.1,...,Zn1m} at the sites {n+1,...,n+m}.
e Assume

T M1 Y11 i
e (1) (S0 50
v (xl s el :c+) 2 Yo1 o

where the elements of 3 are determined by the covariogram or variogram model.
e The conditional distribution of (2,41, ..., Tpim) given xq, ..., z, is:
(wa]21) = ((Tnt1s s Tnpm) (21, - 20)T) ~ N (M2 + Do X0 (21 — ), Z2121_11212)

Note: if we re-express things in terms of precisions, then for

Wi Wi\
— (21 @ Tt Tpen) T~ N <M1> ( 11 12)
z (1'1 y Ty Tt 1 L+ ) Lo ) W21 W22

we have
(z2]71) = (Tng1, -+ s Togem) | (21, - - - 7xn)T) ~ N (M2 + W' Way (1 — ), W2_21) :
e Define the interpolant to be the mean of x5 given the observations x;:
fi221 = pt2 + S X7 (21 — )

o If {x;} really did follow a Guassian process with the specified mean and covariance
function, then the standard error of the enterpolant at x; would be the jj component
of Yoy 21_11212. We'll look at estimating parameters of the covariogram /variogram later.
The conditional mean is the “optimal” interpolator under mean squared error loss.

Some examples:



Gaussian C(r), scale = 2 Exponential C(r), scale = 1

Brownian motion C(r), p = 1.5 scale = 1

Gaussian C(r), scale = 3 Exponential C(r), scale = 10

Brownian motion C(r), p = 1.5 scale = 3

Gaussian C(r), scale = 5 Exponential C(r), scale = 20

Brownian motion C(r), p = 1.5 scale = 5
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Gaussian C(r), scale = 2

Exponential C(r), scale = 1

Brownian motion C(r), p = 1.5 scale = 1

Gaussian C(r), scale = 3

Exponential C(r), scale = 10

Gaussian C(r), scale = 5

Exponential C(1), scale = 20
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2 fealization. mean conditional on-Y=1 points
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a realization

mean conditional on Y=1 points
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3 A closer look at the covariogram

There are a number of features of a variogram/covariogram that are worth noting. It is also
of use to understand how properties of the covariogram affect the resulting spatial process.

e range
e scale

e nugget
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covariance

range

distance

Examples:
e White noise process
e Effects of the “nugget” on the conditional distribution
e Effects of the range on the conditional distribution

e Effects of 4/(0+) on the conditional distribution

4 Estimating the variogram

Given an observed set of points x1,...,x, at locations 1,...,n one may wish to estimate
various properties of the variogram governing their covariance. This can be done graphically
using the empirical variogram.

Definition 4.1 The empirical variogram s determined by discretizing distance into a ng

bins and then estimating
=Y )
= — T — T,
2N, i !

Y(d)
where dp is the set of all pairs (i,7) such that the distance between i and j is within A of d

and Ny is the number of pairs in da.

Note this estimate can be somewhat unreliable. What follows is a number of surfaces and
their empirical variograms derrived from x4, ..., z,, which were sampled uniformly from the
400 points making up a 20 x 20 lattice.
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Reallizations from a Gaussian process with power (p=1.5) variogram
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e What features of v(d) are important to capture
e Fitting a variogram model to the empirical variogram

1. Least squares: Choose 6 so that

> (v(d]0) — A(dy))?

k
is minimized.

2. Weighted least squares: Choose 6 so that

Zk:wk(v(dk\@ —4(dy))?

is minimized. Weights w;, may be chosen to be proportional to the number of
pairs in each bin Ny. This will put more weight on pairs that are closer together.

17



3. Maximum likelihood: Suppose
y ~ N(p, 3(0)),

then we can estimate p and 6 by the values i and 6 that maximize the likelihood:
1 1
L 0l) o (SO exp {50 = =0y - )}

A variant of maximum likelihood is restricted mazimum likelihood (REML) which
uses a slightly modified version of the likelihood.

4. Bayesian estimation. Specify prior distributions for x4 and 6 and use the posterior
mean or posterior mode to estimate 6.

e Anisotropy d’ = ARd. Transform euclidean distance thru a rotation R(f) and a stretch-
ing /shrinking of the principle axes via A. These additional parameters may be absorbed
in 0 for estimating the variogram parameters.

Example: Piazza Road Superfund site.

log dioxin concentrations from Pilot Road site
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One can estimate the variogram parameters by eye, using ML or REML, or better yet, a

Bayesian approach. Use the interpolation formulas of Section 2 to estimate the concentration
at unobserved sites.
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5 Modeling spatial data

y=XB+z+e

where X /3 absorbs standard linear model terms, z absorbs the spatial trend, and e is a white
noise term.

examples

e Agricultural field trials.
e rainfall estimation

e environmental monitoring

e imaging
Observed data: y = (y1,...,yn)"
Unobserved spatial trend: 2z = (21, ..., 2,)7

Covariates: X

Some equivalent formulations:

y ~ NXB+z0.1) y = XfB+z+e y ~ N(XB,0.1+X%(0))
z ~ N(0,%(0)) z ~ N(0,%(0))
e ~ N(0,0%1)

An example: Researchers want to know how carbon concentrations in a stream differ on
two different sides of a culvert on I-40. Concentrations are measured at 9 upstream locations
and 8 downstream locations and are given in the figure below. Is there evidence that the
culvert is associated with differences in carbon concentration?
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Here we can model the 17 measurements by
y ~ N(p+ i, 021 + 5(0))

where «a;, © = 1,2, denotes the upstream or downstream measurements. So the question can
be put in statistical terms, does a; = ap?

It turns out it depends on what covariance function is specified. If an exponential covriance
function is used, then the inference depends on the specified range:

significance by range:

dist 0 50 100 200 400
corr of nearest 0 .0 .1 .2 .5
p-value .01 .01 .02 .06 .30
diff*10°2 .99 .99 .98 .92 .75
6 160 2(;0 3(;0 460

distance

One could rely on maximum likelihood to specify the parameters of the exponential distri-
bution. In fact it fits a covariance that is nearly all nugget effect (ie. no spatial dependence).
However the uncertainty about the covariance parameters are unaccounted for.
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