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Bayesian Hypothesis Testing

Lung tissue samples from n patients are allocated into two
tumor types:

normal cells (Di = 0) (n0 non-tumors)

tumor cells (Di = 1) (n1 tumors)

For each sample, a specific protein is recorded

present (pi = 1)

not-present (pi = 0)

It is of interest to explore whether or not the
presence/absence of the protein indicates whether or not
the tumor is recurrent/non-recurrent.
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Data Models - Retrospective Case-Control Stud

For the normal cells:

pi|Di = 0, π0
iid
∼ Bernoulli(π0)

For the tumor cells:

pi|Di = 1, π1
iid
∼ Bernoulli(π1)

where Di is the Disease status of individual i

Odds of protein presence ω1 = π1/(1 − π1) for diseased
and ω0 = π0/(1 − π0) and non-diseased

Odds Ratio ω1/ω0 is informative
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Null Hypothesis

If the frequency of the protein is the same in both
groups,

H0 : π0 = π1 = π

then the presence of the protein provides no
information about tumor status.

odds ratio
π1/(1 − π1)

π0/(1 − π0)
= 1
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Alternative Hypothesis

If the protein indicator occurs with a different
frequency in the two groups:

H1 : π0 6= π1

then this difference may be enough to help “predict”
the status of a new biopsy.

odds ratio not equal to 1
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Classical Tests

Test for Equality of two proportions π1 = π0

prop.test

Chi-squared test for independence chisq.test
(equivalent)

Fisher’s Exact Test fisher.test

See Chapter 15 of HH
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Posterior Probabilities

Goal: find the posterior probability of H0 and H1 given the
data P = (p1, . . . , pn (and of course D1, . . . , Dn)).

Using Bayes Theorem, this is

P (H1|P ) =
p(P |H1)p(H1)

p(P |H1)p(H1) + p(P |H0)p(H0)

where p(Hi) is the prior probability of Hi.
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Bayes Factor

The Bayes factor is defined as ratio of posterior odds to
prior odds

BF (H1 : H0) =
p(H1|P )/p(H0|P )

p(H1)/p(H0)
=

p(P |H1)

p(P |H0)

which is the ratio of the marginal likelihoods of the data
under the two hypotheses. Rearranging one can express
the posterior probability of H1 as a function of the Bayes
Factor and prior odds (HW).
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Marginal Likelihoods

The marginal likelihood of the data is the distribution of
the data under the hypothesis (or model) and does not
depend on any unknown parameters.

Under H0, the
pi|π ∼ Ber(π)

The marginal likelihood of the data is

p(P |H0) =

∫ 1

0

n
∏

i=1

πpi(1 − π)1−pip(π|H0)dπ

where p(π|H0) is the prior for the common π under H0.
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Marginal Likelihoods

Under H1, we must integrate over π1 and π0 to obtain the
marginal likelihood of the data:

∫∫

(

n0
∏

i=1

πpi

0 (1 − π0)
1−pi

)(

n1
∏

i=1

πpi

1 (1 − π1)
1−pi

)

p(π0, π1|H1)dπ0dπ

where p(π0, π1|H1) is the joint prior under H1.

Choices?
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Priors

π|H0 ∼ Uniform

π1|H1 ∼ Uniform

π2|H1 ∼ Uniform

One set of default choices that leads to marginal
consistency of beliefs.

Marginal compatibility: Marginal distribution of πi is
the same over all hypotheses.

Conditional compatibility: Distribution of parameters
under H0 determined by distribution of parameters in
H1 and conditioning on H0 (change of variables)

May lead to different choices! (Borel Paradox)
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Marginal Likelihood Under H0

p(P |H0) =

∫ 1

0
π

P

n

i
(pi)(1 − π)n−

P
n

i
pi

=

∫ 1

0
π

P

n

i
(pi+1−1)(1 − π)n−

P
n

i
pi+1−1

= B(
∑

i

pi + 1, n −
∑

i

pi + 1)

This is the kernel of a Beta integral

∫ 1

0
t(a−1)(1 − t)(b−1)dt ≡ B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
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Calculations

Results involve beta functions (ratios of gammas)
For large values, take logs of the products/ratios and
express the results in terms of sums of the log of the
gamma function log(Γ(x + y)/(Γ(x)Γ(y))

lgamma(x + y) - lgamma(x) - lgamma(y)

Exponentiate the final result to get the solution. i.e.
Γ(x + y)/(Γ(x)Γ(y))

exp(lgamma(x+y)- lgamma(x) - lgamma(y))

This is more numerically stable than using the gamma
function directly. In R, you can also use the lbeta
function directly.
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Model Choice

Select Model/Hypothesis that has the largest posterior
probability

Select Model/Hypotheis if p(H1|P ) > λ (other
costs/losses associated with making an incorrect
decision)

Don’t pick a hypothesis but use the mixture
distribution implied by both hypotheses.

Find P (D∗ = 1|p∗ = 1, p1, . . . , pn)
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Integration

Calculating P (D∗ = 1|p∗ = 1, p1, . . . , pn) involves
“averaging” or integration over unknown parameters and
hypotheses.

Find p(πi|Hj , p1, . . . , pn) and p(Hj|p1, . . . , pn)

Find P (D∗ = 1|p∗ = 1, πi, Hj) using Bayes Theorem

Result will be a function of πi and Hj, say f(πi, Hj)

Find the posterior distribution of the function: change
of variables, and integrating over hypothesis
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Stochastic Integration

For a large number of times

1. Draw Hj from p(Hj|p1, . . . pn) (Bernoulli draw rbinom)

2. Given Hj , draw πi from its posterior (Beta draw
rbeta)

3. Evaluate f(πi, Hj) for the current draw

4. Repeat

Plot histogram with kernel density estimate, calculate
posterior mean, probability interval or other summaries.
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