Simple Linear Regression March 16, 2009

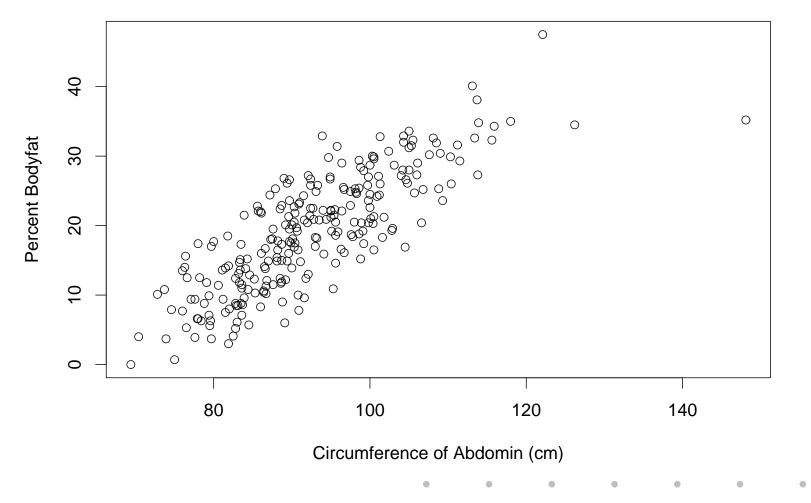
•

Reading Lee Ch 6

Simple Linear Regression – p.1/1

BodyFat Data

•



Simple Linear Regression - p.2/1

Body Fat Example

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-39.2802	2.6603	-14.77	2.210^{-16}
Abdomen	0.6313	0.0286	22.11	2.210^{-16}

95% HPD interval

•

```
0.6313 \pm qt(.025, 250) * 0.0286 = (0.57, 0.69)
```

For every additional cm of abdominal circumference, percent bodyfat increases by 0.57 to 0.69 percent with probability 0.95.

Interpretation

- For every additional centimeter of abdominal circumference, percent body fat increases by 0.67 percent (0.57, 0.69)
- For every additional inch of abdominal circumference, percent body fat increases by 2.54 * .67 = 1.7 percent (1.45, 1.74)
- Abdominal circumference explains roughly 68% of the variation in bodyfat
- Percent Body fat for 34 inch abdomin -42.96 + 34 * 2.54 * .67 = 14.9%

Significance of the Regression

Question: How probable is $\beta = 0$ under the posterior? Informal Answer: Compute posterior probability on β values with lower posterior density than $\beta = 0$

- "Measures" probability of β "less likely" than $\beta = 0$
- Informal "test": Probability in tails = significance level = (Bayesian) p-value

$$p-value = P(|t| > |\hat{\beta}/s_{\beta}|) = P(|t| > |\hat{\beta}/\mathsf{SE}(\beta)|)$$

Classical testing terminology: "The regression on x is significant at the 5% level (or 1%, etc) if the p-value is smaller than 0.05 (or 0.01, etc)"

Lindley's Method

Lindley suggested rejecting the hypothesis that $\beta = 0$ at the $\alpha 100\%$ level of significance if the $(1 - \alpha)100\%$ HPD region does not include 0.

$$0 \notin (\hat{\beta} - t_{1-\alpha/2}s_{\beta}, \hat{\beta} + t_{1-\alpha/2}s_{\beta})$$

Equivalent to comparing the p-value to α and concluding that the regression is significant if the p-value is less than α .

Alternative approach is to compute a Bayes Factor.

Bayes Factors

Testing $H_o: \beta = 0$ versus $H_a: \beta \neq 0$

Assign prior probabilities to H_o and H_a
Find P(H_i | Y) via Bayes Theorem

Bayes Factor for comparing evidence in favor of H_o

$$\mathsf{BF}[H_o:H_a] = \frac{p(H_o \mid Y)/p(H_o)}{p(H_a \mid Y)/p(H_a)}$$

Often difficult to calculate, instead use lower bound based on p-values (Berger, Selke and Bayarri)

$$\mathsf{BF}[H_o:H_a] = -ep\log(p)$$

Bodyfat Example

 $\blacksquare P(|t| > 22.11) = 2.2 \times 10^{-16}$

■ The regression of bodyfat on abdominal circumference is highly significant (p-value = 2.2 × 10⁻¹⁶).

• Lower bound on Bayes Factor BF $[H_0: H_a] = 2.15 \times 10^{-14}$

 $-2.2 \times 10^{-16} \exp(1) \log(2.2 \times 10^{-16}) = 2.156043 \times 10^{-14}$

• Approximate posterior probability of $H_0 = 2.15 \times 10^{-14}$

$$P(H_0 \mid Y) = \frac{\mathsf{BF}[H_0 : H_a]O[H_0 : H_a]}{1 + \mathsf{BF}[H_0 : H_a]O[H_0 : H_a]}$$

Jeffreys Scale of Evidence

Bayes Factor	Interpretation		
$B \ge 1$	H_0 supported		
$1 > B \ge 10^{-\frac{1}{2}}$	minimal evidence against H_0		
$10^{-\frac{1}{2}} > B \ge 10^{-1}$	substantial evidence against H_0		
$10^{-1} > B \ge 10^{-2}$	$T > B \ge 10^{-2}$ strong evidence against H_0		
$10^{-2} > B$	decisive evidence against H_0		

 $B = \mathsf{BF}[H_o:B_a]$

•

Decisive evidence against hypothesis that bodyfat is not associated with abdominal circumference

Predictions

.

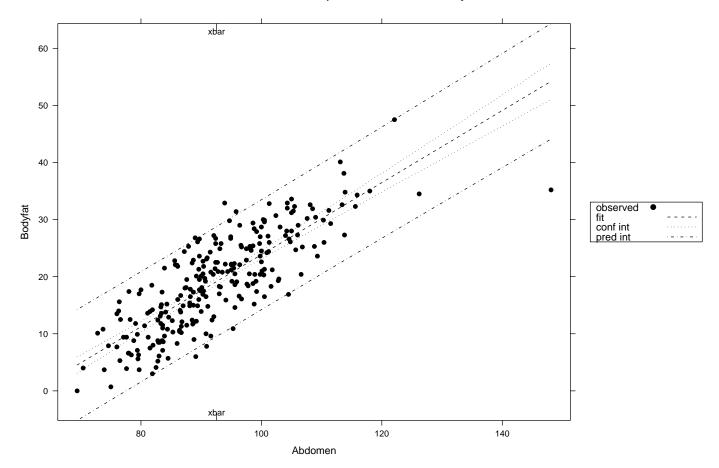
The (posterior) predictive distribution for a new case, $y_{n+1} = \alpha + \beta x_{n+1} + \varepsilon_{n+1}$ is also a Student t distribution with n - 2 df.

$$y_{n+1}|y_1, \dots y_n \sim t_{n-2}(\hat{y}, s_{y_{n+1}}^2)$$
$$\hat{y} = \hat{\alpha} + \hat{\beta} x_{n+1}$$
$$s_{y_{n+1}}^2 = s_{Y|X}^2 (1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{S_{xx}})$$

- **\blacksquare** posterior uncertainty about $\alpha + \beta x_{n+1}$
- depends on x_{n+1} spread is higher for x_{n+1} far from \bar{x} ■ additional variability $+s_{Y|X}^2$ due to ε_{n+1}

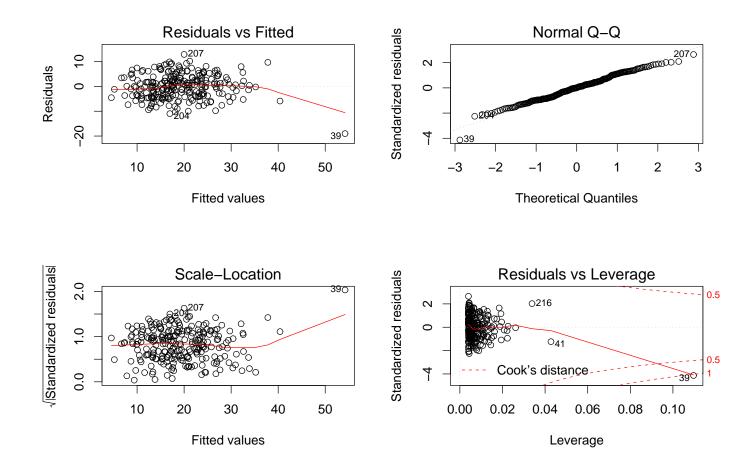
Intervals: ci.plot(bodyfat.lm)

95% confidence and prediction intervals for bodyfat.Im



Residual Analysis

•



Simple Linear Regression - p.12/1