Robust Bayesian Simple Linear
Regression

October 1, 2008

Readings: Gl 4



Body Fat Data: Intervals w/ All Data
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95% confidence and prediction intervals for bodyfat.Im
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Intervals: without case 39

95% confidence and prediction intervals for bodyfat.Im2
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Interpretations

m For a given Abdominal circumference, our probability
that the mean bodyfat percentage is in the intervals
given by the dotted lines is 0.95.

m For a new man with a given Abdominal circumference,
our probabillity that his bodyfat percentage is in the
Intervals given by the dashed lines is 0.95.

m Both have same point estimate

m Increased uncertainty for prediction of a new
observation versus estimating the expected value.

Which analysis do we use? with Case 39 or not — or
something different?
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Options for Handling Influential Cases

m Are there scientific grounds for eliminating the case?
m Test if the case has a different mean than population
m Report results with and without the case

m Determine if transformations (Y and/or X) reduce
Influence

m Add other predictors
m Change error assumptions:

& Yt(w,0,1) 0

Robust Regression using heavy tailed error
distributions
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Likelihood & Posterior
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No closed formed expressions!



Scale-Mixtures of Normal Representation
1d 2
Zi ~ t(v,0,07%) =
Zi | \i ®N(0,02 /)
1id

)\z' ~ G(V/Q,V/Q)

Integrate out “latent” \’s to obtain marginal distribution.



Latent Variable Model
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Posterior Distributions

First Factorization:

mo 3¢ | M,..., A\, has a Normal-Gamma distribution
m Marginal distribution of A\, ..., \, (given the data) is
hard!

Second Factorization:

m)\. ... )\, |« 0, ¢independent Gamma

m Marginal Distribution «, 3, ¢ given the data is hard!
Can we combine the easy (posterior) distributions ???

Oé,ﬁ,¢‘)\1,...,)\n,y

Moo |0, 8,6, Y
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Answer Is a Qualified

Yes!

While the product of the two conditional distributions is not
equal to the joint posterior distribution (unless they are
Independent), we can create a scheme to sample from
the two distributions that ensures that after a sufficient
number of samples that the subsequent samples
represent a (dependent) sequence of draws from the joint
posterior distribution!

The easiest version is the single component Gibbs
Sampler.
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Single Component Gibbs Sampler

Start with (o), 3@ ¢ A A0
Fort=1,...,T, generate from the following sequence of
Full Conditional distributions:

mp(a | 8D, gt-D A\ Ay

)

mp(5 | a®, gt AY AT vy

Y,

_ —1 —1
mp(o | a®, 50, g0 2D AT )
mp(y o, 30, 60 XD V) forj=1,...n
A(—j Is the vector of As excluding the jth component

Easy to find and sample!
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