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SUMMARY
Bayesian inference in regression models is considered using heavy-tailed error distri-
butions to accommodate outliers. The particular class of distributions that can be con-
structed as scale mixtures of normal distributions are examined and use is made of
them as both error models and prior distributions in Bayesian linear modelling, includ-
ing simple regression and more complex hierarchical models with structured priors
depending on unknown hyperprior parameters.
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1. INTRODUCTION

The modelling of outliers in nominally normal linear regression models using alternative error
distributions which are heavy-tailed relative to the normal provides an automatic means of both
detecting and accommodating possibly aberrant observations. Such realistic models do, however,
often lead to analytically intractable analyses with complex posterior distributions in several
dimensions that are difficult to summarize and understand. In this paper we consider a special
yet rather wide class of heavy-tailed, unimodal and symmetric error distributions for which the
analyses, though apparently intractable, can be examined in some depth by exploiting certain
properties of the assumed error form. The distributions concerned are those that can be con-
structed as scale mixtures of normal distributions. In his paper concerning location parameters,
de Finetti (1961) discusses such distributions and suggests the hypothetical interpretation that

“each observation is taken using an instrument with normal error, but each time chosen at

random from a collection of instruments of different precisions, the distribution of the

precisions being that indicated (by the mixing distribution).”
We investigate the basic features of such models in Section 2 along with more general concepts of
outlier handling within a Bayesian framework.

In Section 3 we extend the earlier ideas to the specification of simple prior distributions adopt-
ing heavy-tailed forms, as in Ramsay and Novick (1980) and, in more complex models, Harrison
and Stevens (1976). This approach ensures that any marked inconsistency between the prior and
the data is highlighted and that possibly suspect components of prior distributions are discounted
when they disagree with likelihoods based on reliable data. Finally in Section 4 the extension is
made to more structured priors and hierarchical specifications dependent on unknown hyperprior
parameters. In the special case of a simple one-way classification model with a shrinkage prior
(Smith, 1973) we discuss the potentially misleading and imprecise inferences that can be arrived
at in the standard normal analysis and show how a refinement based on heavy-tailed prior distri-
butions using scale mixtures of normals avoids this.
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2. ERROR MODELS FOR OUTLIERS IN LINEAR REGRESSION
We consider the linear regression model for scalar observations yy, . . ., ¥, given by

y,=x;rB+e,, r=1,...n, 2.1

where X;, ..., X, is a set of known p-vectors of regressors, § is the p-vector of regression para-
meters and €y, ..., €, is a set of zero-mean exchangeable random variables with common distri-
bution continuous on R, unimodal and symmetric. We suppose that this distribution has density
p(e/0)/o where o is an unknown scale parameter and, in order to accommodate observational
outliers, choose p(+) to be heavy-tailed relative to the standard normal density.

2.1. Influence Functions and Outlier Proneness
Assume initially that ¢ is known and equal to unity and that the prior for § is m(8). The
influence of individual observations on the posterior distribution #(8|D,), where
D, ={y,,x,;r=1,...,n}, can be investigated initially by considering the posterior score
function, assuming differentiability,

2, | D, -2, + . —x; B) (22)
B nn(B n)'dB n (B) Z X, 8y — Xy .

r=1

where g(e) = —d/de In p(e) is the influence function of the error density p(e). From (2.2) the
effect that the observation y, has on the posterior score function is determined by the influence
function g and thus, in common with the classical M-estimation approach, we should utilize error
densities having bounded influence functions. (Andrews et al., 1972).

The role played by g(*) in the Bayesian analysis is investigated further by O’Hagan (1979) in
the simple location model where =6, a scalar, and x, =1 for all ». From a Bayesian viewpoint
an outlying observation y,, say, is accommodated if the posterjor distribution function II(6 | D,,)
converges to II(0 | D,_;) for all 6 as | y,, | tends to infinity and this is achieved using outlier-prone
error distributions (O’Hagan, 1979), such as the Student ¢ form.

2.2. Scale Mixtures of Normals
We can write the influence function of the chosen density in the form

g(e)=h(e).e 2.3)

where A(€) is non-negative, non-increasing and symmetric about zero. If p(e) is outlier prone then
h(e) decays faster than 1/ | € |as | €| increases. Using this factorization in the score (2.2) we have

n

:;% In 7(3 |D,,)=-;% Inn@)+ Y x,.h(e) € 2.4

r=1

where €, =y, —x;r B; the term involving the data now looks just as if we had taken the €, to be
independently normally distributed with variances A;* where A, = h(e,). This form can be used
to provide simple iterative schemes for calculating posterior modes but further useful inter-
pretation is obtained using a result of Chu (1973) that, due to the symmetry of p(e), we can write

oo

pe) = g N g(Nie).fQ\) dA 2.5)

0

where ¢(+) is the standard normal p.d.f. and f is some function on (0, *°). If fis a density then
p(€) is a scale mixture of normal densities having the conditional specification (e | A) v N(0, A ™!)
and A having prior density f(\). In this case it is easily shown that £ [A]| €] = h(e). Andrews and
Mallows (1974) discuss conditions under which f is a density and give several examples. One
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further wide class, which includes the double exponential, is the exponential power family with
p(e) aexp (€ %), 0<a<2, for which (2.5) holds with f(A) A"z g(A), and g(A) the density
of the stable distribution of index a/2.

3. OUTLIERS IN SIMPLE LINEAR REGRESSION
3.1. Known Scale Parameter

Consider the model (2.1) with p(e) having the form (2.3) and scale parameter 0 known. We can
now view the errors as being conditionally independent normal with

(& IN)VNO,0* .Y, r=1,...,n, (3.1
€, independent of Ay, r#s, and A;,..., A, independent with common density f(-). Let
A={\;,...,\,} and, as before, D, ={y,,x,;r=1,...,n}. The conditional normality suggests

a conjugate normal prior for 8, 8 v Mb,, 6°By), say, where by and B are known. Then, directly,
we have

(B 1Dy, A) v N(b(A), 6> B(A)), (3-2)
where
B(A)™' =Bg' + i A X Xr (3.3)
and "
b(A) = B(A) (B5* bo + i A X, p). (3.4)
r=1

The marginal posterior distribution is, of course, directly available as

181 Dp)an@) 1 » [(r—x7B)/o]

r=1
and using (2.2), the posterior mode(s) §* are easily found to satisfy
B* =b(A*) 3.5)
where
A*={A],.. .\ )
with
N =k (0 =X 6)/0] = EN\, | Dy, B=*]. (3.6)
Notice that an alternative representation of m(8 | D,,) is as a mixture of the normal distributions
(3.2) with respect to the posterior for (A |D,), which is generally complex. The asymptotic
approximation to m(8 | D,,) is a normal form with mode 8* and covariance matrix G ~* (8*) where

G(B) is the information matrix at 8 given by
2

d
6O)=~ 2o n 1 D )

h
=o‘2{Ba‘ + Y xxg [0r—x ﬁ)/a]} .

r=1
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Further, since g(€) = h(€)e we have g'(€) = h(e) + h'(€)e, hence
n
GE¥)=02B(A*) 402 Y x, xF h'(er) e (3.7)
r=1

where ey = (v, — x; B*)/o. Now using the fact that, for outlier-prone models, h(e) is a decreasing
function of | € |, we have 4'(e)e < 0 and so the second term of (3.7) is negative definite. Therefore

G(@*)™ =o® BA¥)+V (3.8)

where V' is positive definite. Equation (3.8) reflects the fact that, although the marginal mode *
is of the form of the conditional mode b(A) evaluated at A*, the corresponding covariance matrix
B(A*) underestimates the uncertainty in #(8 | D,,); the addition of the extra term V corrects for
this.

Finally notice that, if we adopt an improper uniform reference prior for 8 by setting By =0,
then b(A) and B(A) are the generalized or weighted least squares vector and covariance matrix
respectively and f* of (3.5) is the usual M-estimate for the model.

3.2. Unknown Scale Parameter

When ¢ is unknown the conditional normality of the errors again suggests a conjugate analysis
as follows. For convenience let ¢ = ¢™2. Then the conjugate joint prior for §and ¢ is the normal/
gamma form given by

(B1)~ Ny, ¢~ Bo)
and
o~ dgt Xz, s
for some cg, do >0. Then routine calculation (De Groot, 1970, Section 11.10) leads to the
joint posterior of the form
(B 1Dy, 6, A) v Nb(A), ¢ B(A)) (3.9
and
@ 1D,), A~d(A) ™ %, (3.10)
v;;here b(A), B(A) areasin Section 3.1,¢; =co tnand,if Y=(;,...,yp)and X = (X, ..., x,)T,
then
d(A) =do +(Y = Xb(A)T Y +(bo —b(A)T B5* by
The mode of (3.10) is $*(A) = (c; — 2)/d(A) and the discussion of Section 3.1 suggests the use of
the asymptotlc normal approximation to (8 | Dy, ¢) with mode $* = b(A*) and covariance matrix
G(B*)™! of (3.7) with 072 = ¢, where, now, A* ={A}, ..., A } and
N =k [0, =% B*)/0*] =E[\, | Dy, B =%, 0= 0*], (3.11)

with 0* = ¢*(A*)™! =d(A%)/(c; —2).

Finally consider the case of the improper reference prior for § and ¢ given by 7(8, ) a ¢~*.
Then, again using standard results, the posterior is of the form of (3.9) and (3.10) but now with
b(A) and B(A) as the generalized least squares vector and covariance matrix respectively,

n

ci=n-p and dA)= Y N (r—x; b(A),

r=1

the usual weighted residual sum of squares.
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3.3. Data Analysis using Student t Models

Relles and Rogers (1977) report encouraging results for analyses of the location problem using
mixtures of Student ¢ distributions. In the following simple examples we use ¢ distributions with
k>0 degrees of freedom to illustrate the above analysis. In this case we have
h(€) = (k +1)/(k +€?) and so the maximum value of \} in (3.6)is 1 + k™~ when the standardized
re51dual is zero. Further the score g(€) has its turning points at *v/k and thus g'(€) is negative when
€ > k. For such values of the residuals the contribution of the corresponding observation to the
information matrix in (3.7) is then negative, and the observation becomes doubtful. The cal-
culations are performed using a standard regression package utilizing an iterative weighted least
squares routine to compute 8*, ¢*? and A* of (3.5), (3.11) and (3.6) respectively, in each case
using an improper reference prior.

Now, due to the redescending form of g(e) in the Student # model, the likelihood may be
multimodal. Experience with the simple location problem indicates that this is, however, a remote
possibility with a realistic percentage (< 20 per cent, say) of possible outliers. If there are two (or
more) sizeable groups of observations providing conflicting mformatlon, bimodality may result
and convergence to one mode will lead to many of the weights )\ being small. In this case the
form of the model, in particular, linearity on the chosen scale and symmetry, should be
questioned. Finally, the analysis should be viewed as explorative with the sensitivity to values of
k examined using two or three different values. No single analysis is definitive and the values
chosen here are simply for illustration.

Example 3.1. Lindley (1979) discusses the estimation of the location parameter of a Student
t —5 distribution with 0=1 based on the observations —1, —0.3, —0.1, 0.4, 0.9, 1.6, 3. The
posterior is unimodal with mode B* =0.495 as opposed to the arithmetic mean 0.643, and
B(A*) =0.185 with G ™} (8*) = 0.203. Finally the weights A’ are given by

0.83,1.07,1.12,1.20,1.16,0.97,0.53

indicating, as suggested by Lindley, that the final observation is extreme, providing a negative
contribution to the information G(8*) with all others being positive.

Example 3.2. Cook et al. (1982) discuss a simple straight line regression with an error model
that permits only one outlier, adopting a maximum likelihood analysis. They conclude that, on
this basis, the observation numbered 9 is the estimated outlier although that numbered 11 is also
suspect. In an analysis based on a Student t — 5 model our fitted regression line is very similar to
that of Cook et al. and the weights )\ are all greater than 1.1 but for Ag =0.591 and A;; =0.593,
so that observations 9 and 11 both provide a negative contribution to the information G(8*).

4. STRUCTURED PRIOR MODELS
Ramsay and Novick (1980) discuss the use of heavy-tailed non-normal distributions for both
the error distribution and the prior is the model of Section 3. An extreme example of a heavy-
tailed prior for g is, of course, the improper uniform reference prior which is designed to be con-
sistent with any body of observed data. We shall now investigate the use of proper priors which,
unlike the normal, have the effect that marked inconsistencies between the prior and reliable data
does not lead to the data being discounted in favour of the prior.

4.1. Simple Priors for Regression Parameters
Ramsay and Novick (1980) create heavy-tailed priors by modifying the usual normal form
in the same way as they modify likelihoods. Thus if we wish to modify our nominally normal
prior 8~V N(bo, 0® By), Ramsay and Novick suggest that we use instead that (possibly improper)
prior having score

d
7 In7() =0 h[d(@B)] . Bs" (bo —
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where d*(8) =07 2(B—bo) By (B—bo) and h(u) is a decreasing function on (0, ) that decays
faster than 1/u. As an example suppose that h(u) = (k +p)/(k +u*), k >0, in which case 7(f)
is a multivariate Student ¢ density with k degrees of freedom. Clearly, by analogy with Section
2.2, we can obtain such priors by supposmg the existence of a scalar random variable y > 0, say,
with density f(y), such that (8 | Y) v M(bo, 0°y ! By). Thus, if

oo

q(@) = j ¥ 6(yEd). f)dy
0

is the density of an outlier-prone distribution then the marginal prior for § has built-in protection
against misspecification of b and By in the sense that reliable data that conflicts with the prior
is not discounted in favour of the prior. The variable y can now be included in the set of precision
parameters A and the analysis of Section 3 performed using the proper, conditionally normal and
conjugate prior.

Of course this approach leads to the discrediting of the entire prior in cases of conflict between
the prior and a reliable likelihood. In many problems this is not the behaviour we want since much
of our prior specification, in terms of by and By, may be quite valid with only certain components
being in doubt. Consider as a simple example the case of exchangeable, and uncorrelated

Bi»i=1,...,p with by =15 and By =I. What should we now conclude if an outlier-prone analysis
of a data set With an improper uniform prior provides a posterior for § favouring values near b for
Bi, i=1,...,p—1, but far from b for 6,? The modification mentioned above, giving § an

elliptically (m th1s case spherically) symmetnc heavy-tailed prior, is not reasonable since it is
only the pth component of the prior that disagrees with the data and should, perhaps, be
discredited. The solution is to treat the f; as independent with individual heavy-tailed priors, in
this case with the same prior due to the exchangeability assumption. Using normal scale
mixtures we would then have a set of p independent variables 7v;,...,7p, With common
density f(+) such that (B; | v)) Vv N(b, 0*y;'),i=1,...,p, and B; independent of v; for i #j.
The analysis will again follow the lines of Section 3 W1th the set of v; variables included in A.
The existence of prior correlation causes a problem. Suppose that our assessed covariance
matrix By is not diagonal and that we require the same sort of componentwise protectlon against
misspecification. The most obvious method of dealing with this is to otate the prior to
orthogonality as follows The quadratic form in the nominal prior, (8 —bo)T.Bg* (8 —bo) can be
written as T (z, —a, f)*, where al is the rth row of the p X p matrix A satisfying AB, AT =1,
and z, is the rth element of z=A4by,r=1,...,p. Thus 48 Vv N(z, I) and the corresponding com-
ponentwise heavy-tailed form is obtamed by replacing the identity covariance matrix with a
diagonal form having the vanables Yis--Yp as diagonal elements. If I denotes this matrix then
we have (8| )V N(bo, CI'CT) where C A7, Of course it is useful to view the vector z as a
vector of quasi-observations with “prior” regression matrix A4 in order to use standard regression
packages for calculation. Notice that this form allows comparison of 4 and X = (x4, . . ., x,)';
the prior is potentially influential if the rows of 4 are extreme by comparison with the rows of
the original regression matrix X.

Example 4.1. Ramsay and Novick (1980) discuss the analysis of a multiple regression con-
cerning 29 sets of observations on measures of performance in each of three educational tests.
We denote the response variable by Y, the two regressors by X, and X, . After lengthy discussion
Ramsay and Novick arrive at nominal prior for §, ° as given in Section 3.2 and, following the
above discussion, the corresponding quantities z and 4 are given by

43 045 744 744
z=| 031}, 4= 0 -6.3 6.3
0.31 -0.12 O 0

By comparison, the data {y;, (1, xy;, X5;))},i=1,. . ., 29, are such that
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74 <y; <143, 65<x;; <135, 78 <x,;<129.

So at a glance we can see that the first row of A is reasonably consistent with the data although
the corresponding element of z is outside the range of the observations. The other two compon-
ents come from a completely different part of the design space, however, indicating a qualitative
difference between the prior information and that provided by the data.

However, an analysis using Student ¢ — 5 models for the data and the components of the prior
provides no indication of conflict between the data and the prior; the prior specification is con-
sistent with the experimental results and there are no observational outliers. This is confirmed by
further analyses with different values of the degrees of freedom parameter for the models; the
estimated regression coefficients varied only slightly as k varied indicating that there is really no
need to doubt normality.

4.2. Hierarchical Models

The ideas underlying the componentwise analysis above are relevant to the application of
hierarchical linear models (Lindley and Smith, 1972). Harrison and Stevens (1976) use con-
taminated normal models to characterize observational outliers and changes in the structure of
time-series in a dynamic linear model framework. These changes in structure can be viewed as
corresponding to the occurrence of “outliers” in the lower (unobservable) levels of a hierarch-
ical model and hence the need for heavy-tailed distributions in these lower levels. The notion is
important in general models but will only be discussed here in connection with the simple yet
illuminating example of a one-way classification with a “shrinkage” prior.

The usual, normal model is given in Smith (1973) as

(yi]- | ﬁ,) ’\/N(ﬁi, 02), ji=1,..., n;, (41)
with
B; v N, 0*7%), i=1,...,p. 4.2)

where 72 is known. We shall, for convenience, adopt a uniform reference prior for u, and will
consider three different analyses of the model. In each analysis the posterior modes of the normal
posterior distributions for the §; are shrinkage estimators of the form

B =0y B+ (1 -ap) i, (4.3)
where 0 <o; <1,

- T
Bi=| 2 ai}] Y ay vy, 4.4)
-j=1 j=1
and

_re 1
p=| X bi] 2 biby (4.5)

—i=1 i=1

with the a;; and b; to be specified. The analyses are as follows. _
(i) The standard normal model above has a;; = 1 and b; = ny(nr* +1) 7! for alli, ;. So f; isthe
arithmetic mean of the observations in the ith group, i is a weighted average of these
with the weights simply accounting for the different sample sizes 7;, and o; = 72 b;.
(ii) To accommodate observational outliers we use the analysis of Section 3, modifying the
likelihood to read

(Viilﬁi,)\ij)’\/N(ﬁi,Oz)\i;l), j=1,..,m, i=1,...,p,
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where the )\,i are independent with common density f(+). Outliers will then be protected
against as in Section 3 and, again, iterative calculations will provide ﬁ, and the corres-
ponding values of

Nj=E[Ng 1Y, 8=p%].
To examine the form of §;* assume that the N;j are known then we have

ni
d” = )\i]' and, ifq, = Z )\”, (] = 1, ey ng), bi =(Ig(lh 7'2 + 1)’1 with o = 1'2 bi'
j=1
So not only do the A; discount outliers in the calculation of the B; in (4.4), but, from
(4.5), the influence of B; on the overall mean estimate [ is proportional to the total
precision in the ith group, g;.

(iii) Suppose in the analysis of (ii) the values of B;,i=1,...,p —1, are closely grouped but
Bp is quite separate from this group indicating that the pth group mean is extreme by
comparison with the other, similar, values. In this case we would like to note that §, is
atypical but, as a result of the model, the overall mean estimate & is unduly shifted
towards up, and so, in the shrinkage in (4.3), the very features that we are interested in
detecting— the differences between the f;—tend to be obscured. This “overshrinkage”
as a result of the prior (4.2) can be avoided by using a heavy-tailed prior specified by

@i 1) v NO, Pyt i=1,...p,

with the 1; being independent with a common prior fg‘ ). Again the analysis of Section 3
can be used to calculate the ﬁ, and corresponding 7y; but for now assume the 7; to be
known. Then returning to (4.3)-(4.5), we have a;; and g; asin (ii), b; = ¥;qi(qs7> + 7)™
and ;=71 bi/'y, As a result the atypical Bp, having a small v,, will be discounted in the
calculation of g and, since ¢y increases w1th decreasing vy, Bp will be shrunk much less
towards u than the other, homogeneous, 6,

Example 4.2. The data of Table 1 is a subset of observations measuring the effect of the
application of a sulphur treatment in reducing scab disease of potatoes taken from Cochran and
Cox (1957, p. 97). The original experiment actually concerned two factors, the time and level
of the application, but we consider the data here as a simple comparison of six treatments to
illustrate the above analysis with p = 6 and n; = 4 for all i.

TABLE 1
1 2 3 4 5 6
9 16 10 30 18 17
9 10 4 7 24 7
16 18 4 21 12 16
4 18 B 9 19 17

For illustration, the models used are based on Student ¢ — 2 distributions with 7% = 0.25 so that
the within group standard deviation is twice that between groups. Table 2 dis lays the values of
the modes ﬁi , , 6, in essentially increasing order, and the estimate o 2 for the analyses
(1), (ii) and (iii) and the ordinary least square (OLS) analysis.

Note the considerable shrinkage in (i) as compared with the raw OLS estimates; in (i) groups
2, 4, 5 and 6 are clearly similar with 1 and 3 somewhat lower. The estimates in (11) are similar to
those in (i) with the exception of group 4; B3 is shifted downwards essentially due to the accom-
modation of the outlier Y4; = 30 which receives a weight N =0. 18 Group 5 is srmrlarly, though
less markedly, affected due to the discounting of Y5, =24 with Aip =0.51. In (iii) B3 is shifted
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TABLE 2
Group 3 1 6 2 4 5 o*?
OLS 5.8 9.5 14.3 15.5 16.8 18.3 35.2
o 9.5 11.4 13.8 14.4 15.0 15.8 30.2
(ii) 9.4 11.2 14.0 14.3 12.5 15.0 20.6
(iii) 8.0 11.9 14.2 14.5 13.1 15.4 19.2

downwards and the other group estimates are shrunk more closely together. In (i) and (ii) then,
overshrinkage occurred and is remedied in (iii) in which 3 = 0.41 with the other group weights
being larger than 1. Group 3 is thus atypical with the other five essentially homogeneous.
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