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P values are the most commonly used tool to measure ev-
idence against a hypothesis or hypothesized model. Un-
fortunately, they are often incorrectly viewed as an error
probability for rejection of the hypothesis or, even worse,
as the posterior probability that the hypothesis is true. The
fact that these interpretations can be completely misleading
when testing precise hypotheses is � rst reviewed, through
consideration of two revealing simulations. Then two cal-
ibrations of a p value are developed, the � rst being inter-
pretable as odds and the second as either a (conditional)
frequentist error probability or as the posterior probability
of the hypothesis.

KEY WORDS: Bayes factors; Bayesian robustness; Con-
ditional frequentist error probabilities; Odds.

1. INTRODUCTION

In statistical analysis of data X, one is frequently work-
ing, at a given moment, with an entertained model or hy-
pothesis H0 : X ¹ f (x); here we will consider the case
where f (x) is a continuous density. A statistic T (X) is
chosen to investigate compatibility of the model with the
observed data xob s , with large values of T indicating less
compatibility. The p value is then de� ned as

p = Pr(T (X) ¶ T (xob s )). (1)

In this article, we assume that f (x) is completely speci-
� ed, so that the probability computation in (1) is under H0.
The null hypothesis is thus a “precise” hypothesis, as op-
posed to, say, the hypothesis that a treatment mean is less
than zero. The results herein apply primarily to such pre-
cise hypotheses; see Casella and Berger (1987) and Berger
and Mortera (1999) for discussion of the one-sided testing
situation.

Often, of course, the density in H0 will contain nuisance
parameters, in which case computation of a p value can be
considerably more involved. For review and discussion of
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appropriate ways to de� ne a p value in this situation, see
Bayarri and Berger (1999, 2000). The focus therein is in
developing p values that are valid, in the sense of having a
uniform distribution under H0. The calibration of p values
that is discussed in this article depends only on having a
p value that is valid, so the restriction to a point null hy-
pothesis is only done here for pedagogical reasons. Note,
also, that alternative hypotheses, H1, will be introduced as
we proceed but alternatives play only a secondary role in
the analysis since, in a sense, we will “optimize” over all
reasonable alternatives.

The di culty in interpretation of p values has been high-
lighted in many articles, among them Edwards, Lindman,
and Savage (1963), Gibbons and Pratt (1975), Berger and
Sellke (1987), Berger and Delampady (1987), Delampady
and Berger (1990) (which speci� cally considers the prob-
lem of testing � t when T (X) is chosen to be the usual chi-
squared statistic for � t), and Schervish (1996); and has even
reached the popular press (Matthews 1998).

A focus of these works (and the focus of this article) is
on what could be termed the “p value fallacy,” by which we
mean the misinterpretation of a p value as either a direct
frequentist error rate, the probability that the hypothesis is
true in light of the data, or a measure of odds of H0 to
H1. [The term “p value fallacy” was used, in the � rst of
these senses, in the excellent articles Goodman (1999a,b).]
Although standard textbooks typically warn against such
interpretations, the warnings often go unheeded. Part of the
purpose of this article is to provide simple examples (in
Section 2) illustrating the p value fallacy, examples that are
easy to use in even elementary courses so as to reinforce
the verbal warnings against misinterpretation of p values.

Unfortunately, even direct illustrations of the p value fal-
lacy are likely to have only a limited e¡ect, unless students
are also presented with suitable alternatives. In Section 3 we
discuss two such alternatives that can be viewed as meth-
ods of calibrating p values so that they can be interpreted
in either a Bayesian or a frequentist way. The calibrations
are quite easy to state: for the Bayesian calibration, simply
compute

B(p) = ¡ e p log(p) ; (2)

when p < 1=e, and interpret this as a lower bound on the
odds provided by the data (or Bayes factor) for H0 to H1.
(The � nal odds of H0 to H1 are found by multiplying the
Bayes factor by the prior odds of H0 to H1.) In terms of
frequentist Type I error probability ¬ (in rejecting H0), the
calibration is

¬ (p) = (1 + [¡ e p log(p)]¡ 1) ¡ 1. (3)

Although motivated by a pure frequentist argument in Sec-
tion 3.1.2, this latter expression also has a Bayesian inter-
pretation; it is the posterior probability of H0 that arises
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Table 1. Calibration of p Values as Odds (Bayes factors) and
Conditional Error Probabilities

p .2 .1 .05 .01 .005 .001
B(p) .870 .625 .407 .125 .072 .0188

(p) .465 .385 .289 .111 .067 .0184

from use of the Bayes factor in (2) together with the as-
sumption that H0 and H1 have equal prior probabilities of
1=2. Thus, use of (3) has the additional pedagogical advan-
tage that one need not fear misinterpretation of a frequen-
tist error probability as the probability that the hypothesis
is true; here, they coincide.

Table 1 presents various p values and their associated cal-
ibrations. Thus, p = .05 translates into odds B(.05) = .407
(roughly 1 to 2.5) of H0 to H1, and frequentist error proba-
bility ¬ (.05) = .289 in rejecting H0. (The default posterior
probability of H0 would also be .289.) Clearly p = .05 does
not indicate particularly strong evidence against H0. Even
p = .01 corresponds to only about 8 to 1 odds against H0.
These calibrations will be formally motivated in Section 3,
from a variety of perspectives.

2. ILLUSTRATIONS OF THE P VALUE FALLACY

In this section, we present an extended example that il-
lustrates the p value fallacy. The example is presented in
terms of a simulation, for two reasons. First, it is then ac-
cessible to even beginning statistics students, and can be
used in introductory classes to convey the meaning of p
values. Second, the use of simulation emphasizes the fre-
quentist nature of these issues; we are not discussing a con-
� ict between frequentist and Bayesian reasoning, but are
exhibiting a fundamental property of p values that is appar-
ent from any perspective.

Consider the situation in which experimental drugs
D1; D2; D3; . . . are to be tested. The drugs can be for the
same illness (say, AIDS, common cold, etc.) or di¡erent
illnesses. Each test will be thought of as completely inde-
pendent; we simply have a series of tests so that we can
explore the frequentist properties of p values. In each test,
the following hypotheses are to be tested:

H0 : Di has negligible e¡ect versus
H1 : Di has a non-negligible e¡ect . (4)

Note that the null hypotheses, H0, have special plausibil-
ity in these tests; many experimental drugs that are tested
have “negligible e¡ect,” so that these null hypotheses could
reasonably be true. [This is related to the earlier comment
that we are only concerned with the testing of “precise” hy-
potheses. See Berger, Boukai, and Wang (1997) for further
discussion.]

Suppose that one of these tests results in a p value º
.05 (or º .01). The question we consider is: How strong is
the evidence that the drug in question has a non-negligible
e¡ect? To study this, we will simply collect all the p values
from a large number of such tests, and record how often
the null hypothesis is true for p values at various levels.
For instance, Table 2 shows hypothetical output from the
� rst 12 tests. Suppose we focus on those tests, in a long

series of tests, for which p º .05 (D2 and D8 in Table 2) or
p º .01 (D5 and D10 in Table 2), and ask: What proportion
of these tests have true H0; that is, ine¡ective drugs?

We shortly discuss the simulation to answer this question,
but here is the basic and surprising conclusion for normal
testing, � rst established (theoretically) by Berger and Sellke
(1987). Suppose it is known, a priori, that about 50% of the
drugs tested have a negligible e¡ect. (We shortly consider
the more general case.) Then:

1. Of the Di for which the p value º .05, at least 23%
(and typically close to 50%) will have negligible e¡ect.

2. Of the Di for which the p value º .01, at least 7% (and
typically close to 15%) will have negligible e¡ect.

Similar results arise for other initial proportions of in-
e¡ective drugs. Indeed, suppose that the initial proportion
of ine¡ective drugs in the simulation is º 0. Then, among
all those tests for which p º .05, a lower bound (derived
by Berger and Sellke 1987) on the proportion of true nulls
is given in Figure 1. For instance, if the initial proportion
of true nulls is about 1=3 (2=3), then the proportion of true
nulls among those tests for which p º .05, is at least 12%
(35%), and is typically (i.e., for most simulations) much
larger.

The simulation we consider to represent this situation
supposes that each test in (4) is based on normal data
(known variance), with ³ j being the treatment mean for Dj ,
so that (4) is the test of H0 : ³ j = 0 versus H1 : ³ j 6= 0. One
must choose º 0, the initial proportion of null hypotheses
that are true, and also the values of ³ j under the alternative
hypotheses. For each hypothesis, one then generates normal
data with mean ³ j , and computes the corresponding p value,
de� ned for the usual test statistic, T (X) =

p
nj jXjj=¼ j , as

p = 2 [1 ¡ ©(T (xob s ))] ; (5)

here nj , ¼ j , and Xj are the sample size, standard deviation,
and sample mean corresponding to the test of Dj , and © is
the standard normal cdf. After doing this for a large series
of tests, one looks at the subset of p values which are near
a speci� ed value, such as .05. For instance, one can look at
those tests for which .049 µ p µ .050. (Any small interval
near p = .05 would yield essentially the same answer.) One
then simply notes the proportion of such tests for which
H0 is true. An applet that performs this simulation can be
found at http:/ / www.stat.duke.edu/ ¹ berger/ p-values.html.
The Web site also discusses numerous further details, such
as choice of the alternatives ³ j . (Note that the lower bounds
discussed above, and given in Figure 1, are true for any

Table 2. P Values Corresponding to Testing Whether Drug
Di has Negligible E ect

Drug D1 D2 D3 D4 D5 D6
p value .41 .049 .32 .94 .01 .28

Drug D7 D8 D9 D10 D11 D12
p value .11 .05 .65 .009 .09 .66

The American Statistician, February 2001, Vol. 55, No. 1 63



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

initial proportion of true nulls, p0

lo
w

er
 b

ou
nd

Figure 1. Lower Bound on the Proportion of True Nulls Among Those Tests for Which the p Value is Close to .05.

choice of alternatives, and most choices of alternatives will
give answers substantially higher than these lower bounds.)

A large number of variants of this simulation could be
performed. Having normal data is not crucial; the results
would be qualitatively similar under most standard distri-
butional assumptions. [See Berger and Sellke (1987) for
some exceptions.] Likewise, the results would not quali-
tatively change if the null hypotheses were replaced by
small interval nulls of the form H0 : j³ jj < ° , providing
° < ¼ j=(4

p
nj). This is important because hypotheses such

as H0 : ³ j = 0 are unlikely to ever be true exactly. (Dj will
probably have some e¡ect, even if only ³ j = 10 ¡ 8.) Indeed,
the hypothesis H0 : ³ j = 0 should really just be thought of
as an approximation to a small interval null, and Berger and
Delampady (1987) showed that it is a good approximation
if ° < ¼ j=(4

p
nj). Thus, in practice, one must make the

judgment that this condition will hold before formulating
the test as that of H0 : ³ j = 0. Note, also, that this condi-
tion will be violated for large enough nj , so that a di¡erent
analysis will be called for if the sample size is huge.

Another point of interest is that the answers obtained
from the simulation would be quite di¡erent if one consid-
ered, say, the subset of all tests for which 0 < p < .05.
Indeed, if the initial proportion of true nulls in the above
simulation were 1=2, then, among those tests for which
0 < p < .05, the proportion of true nulls would have
the lower bound .048 (although, for nonextreme values of
the alternative ³ j , the proportion of true nulls would be
much higher). The point, however, is that, if a study yields
p = .049, this is the actual information, not the summary
statement 0 < p < .05. The two statements are very di¡er-
ent in terms of the information they convey, and replacing
the former by the latter is simply an egregious mistake.

Although the simulation visibly demonstrates that a p
value near .05 provides at best weak evidence against H0,
it does not indicate why this is so. The reason is basically
that the probability of getting a p value near .05, when H1

is true, cannot be much bigger than the probability of get-
ting a p value near .05, when H0 is true. To explicitly see
this, consider a slightly di¡erent aspect of the above simu-

lation. We will create a histogram that indicates where the
p values in (5) fall that are generated from the null hy-
potheses, and also a histogram of the p values generated
under the alternative hypotheses. For ease of assimilation,
we give only the portion of the histogram corresponding to
the range .01 < p < .10.

Under the null hypotheses, p values are well known to be
Uniform(0; 1); the histogram that would result from such p
values is represented in Figure 2 by the unshaded columns.
Thus, the probability that .01 < p < .02 is .01.

To make a histogram of the p values in (5) under the
alternative hypotheses, we must choose the nj , ¼ j , and ³ j .
The distribution of p under the alternatives actually depends
only on the ¹ j =

p
nj ³ j=¼ j . We consider the four cases (a)

¹ j º 1=2, (b) ¹ j º 1, (c) ¹ j º 2, and (d) ¹ j º 4. Figure
2 gives the corresponding histograms of p values (over the
range .01 < p < .10); these are the shaded columns.

As expected, smaller values of p are more likely under
the alternatives than under the nulls, but the degree to which
this is so is rather modest for p values in common regions.
For instance, a p value in the interval (.04; .05) is essen-
tially equally likely to occur under the nulls as under the
alternatives when ¹ j = .5; is less likely to occur under the
alternatives when ¹ j = 4; and is considerably more likely
under the alternatives only in the case ¹ j = 2 (where the
p value is 3.7 times more likely to have arisen from the
alternative than the null). This last case is essentially the
choice of alternatives that maximizes the probability of p
being in the interval (.04; .05) (as shown by Berger and Sel-
lke 1987). Thus, no matter how one chooses the nj , ¼ j , and
³ j under the alternatives, at most 3.7% of the p values will
fall in the interval (.04; .05), so that a p value near .05 pro-
vides at most 3.7 to 1 odds in favor of H1. (This is actually
just a restatement of the earlier observation that, if 50% of
the nulls are initially true, then at least 23% of those with
a p value near .05 will be true.) And other choices of the
alternatives are much more likely to yield a histogram like
the other cases in Figure 2, rather than this extreme bound.
The clear message is that knowing that the data are “rare”
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Figure 2. Distribution of p Values Under the Null Hypotheses (unshaded columns) and Under the Alternative Hypotheses (shaded columns)
Over the Range .01 < p < .10. =

p
n / is the standardized mean under the alternative.
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under H0 is of little use unless one determines whether or
not they are also “rare” under H1.

3. CALIBRATION OF P VALUES

In this section, the calibrations of a p value, that were
given in (2) and (3), are developed. Motivations will be
given in terms of nonparametric testing and parametric test-
ing, from both Bayesian and frequentist perspectives. Since
our goal is to interpret the calibrated p values as lower
bounds on Bayes factors or conditional frequentist error
probabilities, we have to explicitly consider alternatives to
the null model.

3.1 Justi� cation Via p Value Testing

3.1.1 Bounds on the Odds of H0 to H1 Under Beta Al-
ternatives

In Section 2, we referred to the fact that, under the
null hypothesis, the distribution of the p value, p(X), is
Uniform[0; 1]. [We write p(X) to emphasize that p is now
being treated as a random function of the data.] Alternatives
are typically developed by considering alternative models
for X, as in Section 2, but the results then end up being quite
problem speci� c. An attractive approach is to, instead, di-
rectly consider alternative distributions for p itself. Indeed,
we shall suppose that, under H1, the density of p is f (pj¹ ),
where ¹ is an unknown parameter. Thus, we will test:

H0 : p ¹ Uniform(0; 1) versus H1 : p ¹ f (pj¹ ).

Others have previously considered direct choice of alterna-
tives for p(X); see, for instance, Hodges (1992), Donahue
(1999), and Sackrowitz and Samuel-Cahn (1999). If the test
statistic has been appropriately chosen so that large values
of T (X) would be evidence in favor of H1, then the den-
sity of p under H1 should be decreasing in p. A class of
decreasing densities for p that is very easy to work with is
the class of Beta(¹ ; 1) densities, for 0 < ¹ µ 1, given by

f (pj¹ ) = ¹ p ¹ ¡ 1 . (6)

The uniform distribution (i.e., H0) arises from the choice
¹ = 1. We begin with this class because it is easy to follow
the derivations of the calibrations in this case. A consid-
erably more general class of alternatives is considered in
Section 3.1.3.

The Bayes factor (or odds) of H0 to H1, for a given prior
density º ( ¹ ) on this alternative, is

B (p) =
f (pj1)

R 1

0
f (pj ¹ ) º ( ¹ ) d¹

.

Calculus shows that

B = inf
all

B (p) =
f (pj1)

sup ¹ ¹ p ¹ ¡ 1

= ¡ e p log p for p < e ¡ 1 ; (7)

and B = 1 otherwise, which is the proposed calibration in
(2). Of particular note is that this lower bound holds for
any prior distribution on ¹ , and can hence be viewed as
an objective lower bound on the odds of H0 to H1 for the
Beta(¹ ; 1) alternatives.

3.1.2 Bounds on Conditional Frequentist Error Proba-
bilities

In this section, we develop the calibration in (3), using the
conditional frequentist approach. The idea behind this ap-
proach, formalized in Kiefer (1977) and further developed
in Berger, Brown, and Wolpert (1994), Wolpert (1995), and
Berger, Boukai, and Wang (1997), is to � nd a conditioning
statistic that measures the amount of evidence in the data
(for or against the null hypothesis), and then to report error
probabilities conditional on this statistic. The result is true
frequentist error probabilities that are as data-dependent as
p values. For the situation considered in Section 3.1.1, we
will show that a lower bound on the conditional error prob-
ability of Type I is given by (3).

We begin with an example of conditional frequentist test-
ing, to illustrate basic ideas and issues. The presentation
that is adopted here is di¡erent than in the above articles,
in part to clearly illustrate the options that are available
and, in part, to emphasize the pure frequentist nature of the
resulting procedure.

Assume that H0 and H1 are simple hypotheses (with ab-
solutely continuous densities) and let S denote the statistic
with respect to which conditioning is to be performed. It
is most traditional, in conditional frequentist inference, to
choose S to be an ancillary statistic, which here would mean
that it has the same distribution under H0 as under H1. It
will be seen, however, that other choices can be even more
attractive.

A useful way to construct suitable S is to consider what
we will call evidential equivalence statistics, E0 and E1,
that have two purposes. First, H0 will be accepted when
E0 > E1 (i.e., when the “evidence” for H0 is greater than
that for H1), and rejected otherwise. Next, de� ne the con-
ditioning statistic by S = maxfE0; E1g. Intuitively, data in
the acceptance region, and for which E0 = s, will be viewed
as providing equivalent strength of evidence as data in the
rejection region for which E1 = s. Two interesting possible
choices of the Ei are (a) likelihood ratios and (b) p values.

With S determined, one computes conditional Type I and
Type II error probabilities as

¬ (s) = P0(Type I errorjS = s) º P0(E0 µ E1jS(X) = s)

­ (s) = P1(Type II errorjS = s)

º P1(E0 > E1jS(X) = s); (8)

where P0 and P1 refer to probability under H0 and H1,
respectively.

Example 1. Consider the special case of the situation
in Section 3.1.1, in which it is desired to test H0 : p ¹
Uniform(0; 1) versus H1 : p ¹ Beta(1=2; 1). Noting that the
density under the alternative is (2

p
p) ¡ 1, it follows that the

likelihood ratio of H0 to H1 is L(p) = 1=(2
p

p) ¡ 1 = 2
p

p.
As p varies from 0 to 1, note that L(p) varies from 0 to 2.
We now consider four choices of the evidential equivalence
statistics.

1. Ancillary conditioning: Choose E0 = L(p) and E1 =
2 ¡ L(p). The intuition is that L ranges from 0 to 2, and
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L = 1 is often viewed as conveying equal support for the
two hypotheses; thus one might feel that, say, data for which
L = 3=2 is equivalent, in terms of strength of evidence,
to data for which L = 1=2. The main motivation for this
choice, however, is that a basic calculation shows that the
statistic S = maxfL(p); 2 ¡ L(p)g is an ancillary statistic,
having the same distribution under H0 as under H1. Part
of the folklore in statistics is that one should condition on
ancillary statistics when they are available. Computing the
resulting conditional error probabilities yields the following
test:

TA =

8
>>>>>>><

>>>>>>>:

if pob s µ 1
4 , reject H0 and report Type I

conditional error probability
¬ (pob s ) =

p
pob s ;

if pob s > 1
4
, accept H0 and report Type II

conditional error probability
­ (pob s ) = 1

2
.

(9)

The Type II conditional error probability in (9) is not sat-
isfactory for two reasons. First, although L(pob s ) varies as
pob s varies from 1=4 to 1, ­ (pob s ) remains constant. Fur-
thermore, this constant is 1=2, which suggests that one is
doing no better than random choice of an hypothesis (at
least from the perspective of Type II error).

2. Intrinsic signi� cance: For the “symmetric” class of
problems in which L(p) has the same distribution under H0

as does 1=L(p) under H1, Birnbaum (1961) can be viewed
as suggesting use of E0 = L(p); E1 = 1=L(p) and using
S = maxfL(p); 1=L(p)g to de� ne a conditional frequentist
test, calling the resulting conditional Type I error the “in-
trinsic signi� cance level.” This choice of S was seconded
by Barnard in the discussion of Kiefer (1977). The resulting
test for this example is as follows:

TI =

8
>>>>>><

>>>>>>:

if pob s µ 1
4 , reject H0 and report Type I conditional error probability

¬ (pob s ) =
1 if 0 < pob s < 1

16
(1 + (16p2

ob s )
¡ 1) ¡ 1 if 1

16 < pob s < 1
4

;

if pob s > 1
4 , accept H0 and report Type II conditional error probability

­ (pob s ) = (1 + 4pob s )
¡ 1.

(10)

It is obviously unsuitable to report ¬ (pob s ) = 1 when
pob s < 1=16; that is, when the evidence against H0 is
strongest! This strange conditional error probability arose
because the values of E1 = 1=L(p) range from 2 to 1 over
this range of p, and there are no data in the acceptance re-
gion for which E0 = L(p) can match these values. Hence
S simply equals p for p < 1=16, and the conditioning in
(7) is degenerate. Birnbaum (1961) did not actually recom-
mend this test for situations such as this example that are
not appropriately symmetric; our purpose in considering it
is simply to show that this “natural” de� nition of evidential
equivalence does not lead to fruitful conditional frequentist
tests in general.

3. p value conditioning: In classical statistics, the most
commonly used measure of evidence is the p value, so it is
natural to consider choosing E0 = p0 and E1 = p1, where
p0 is the p value when testing H0 versus H1, and p1 is the p
value when testing H1 versus H0. Note that the use of p val-
ues in determining evidentiary equivalence is much weaker
than their use as an absolute measure of signi� cance. In
particular, use of Ei = Á(pi), where Á is any strictly in-
creasing function, would determine the same evidentiary
equivalence; thus the criticisms of p values that we raised
in earlier sections would not apply to their use here.

De� ning S = maxfp0; p1g avoids the problem incurred
by the intrinsic conditioning statistic, since both pi range
continuously from 0 to 1 and one never has “unmatched”

data. The resulting conditional frequentist test is:

TP =

8
>>>>>>><

>>>>>>>:

if pob s µ .382, reject H0 and report Type I
conditional error probability

¬ (pob s ) = (1 + 1
2 p

¡ 1=2
ob s ) ¡ 1;

if pob s > .382, accept H0 and report Type II
conditional error probability
­ (pob s ) = (1 + 2p

1=2
ob s ) ¡ 1.

(11)

These conditional error probabilities do not exhibit un-
natural behavior for either small or large values of pob s ,
so that TP is quite attractive. There is a possible oddity for
middle values of pob s : one might make a decision with an er-
ror probability larger than .5. For instance, when pob s = .36,
then the conclusion of TP is to reject H0 and report con-
ditional error probability ¬ (.36) = .55. This possibility led
Berger, Brown, and Wolpert (1994) to introduce a “no de-
cision” region for this test, which eliminated the problem.
The complication is arguably unnecessary, however, in that
the situation occurs only with uninteresting data that pro-
vides no real evidence for, or against, H0.

There is an additional startling fact about TP: a direct ap-
plication of Bayes’s theorem shows that ¬ (pob s ) and ­ (pob s )
are precisely the Bayesian posterior probablities of H0 and
H1, respectively, assuming the hypotheses have equal prior
probabilities of 1=2. Berger, Brown, and Wolpert (1994)
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showed that this equivalence holds generally when testing
simple hypotheses.

4. Equal probability continuum conditioning: Kiefer
(1977) suggested choosing S so that ¬ (s) = ­ (s); this is nat-
ural from a minimax perspective. One can � nd the deriva-
tion of S and computation of the associated conditional
error probabilities in Kiefer (1977) (although it is done for
the variable Y = ¡ log(p), which has an exponential distri-
bution). The resulting test is

TC =

8
>>>>>>><

>>>>>>>:

if pob s µ .397, reject H0 and report Type I
conditional error probability

¬ (pob s ) = (1 + (p
¡ 3=4
ob s ¡ 1)1=3) ¡ 1 ;

if pob s > .397, accept H0 and report Type II
conditional error probability
­ (pob s ) = (1 + (p

¡ 3=4
ob s ¡ 1)¡ 1=3) ¡ 1.

(12)

This conditioning has the nice property that it also avoids
the di culty of the intrinsic signi� cance test: it guarantees
“matching” data in both the rejection and acceptance re-
gions. But the Type II conditional error probability has the
undesirable property that ­ (pob s ) ! 0 as pob s ! 1; this is
highly unnatural because L(1) = 2, which hardly suggests
that the decision to accept H0 would be “error-free.”

Note: In each of the above scenarios one could con-
sider conditioning on S = minfE0; E1g rather than S =
maxfE0; E1g. The motivation would be that, instead of
equating evidence in favor of the two hypotheses, one
equates evidence against them. For this example, computa-
tion shows that ancillary conditioning and intrinsic signi� -
cance conditioning are una¡ected by this change. However,
p value conditioning with this choice of S yields quite dif-
ferent answers, but answers that are clearly unsatisfactory.
Indeed, the resulting conditional error probabilities are such
that ¬ (pob s ) ! 1=3 as L(pob s ) ! 0, while ­ (pob s ) ! 0 as
L(pob s ) ! 2, neither of which is sensible. Hence, this choice
of S should not be considered.

We now turn to the more general problem of interest,
testing H0 : p ¹ Uniform(0; 1) versus H1 : p ¹ Beta( ¹ ; 1).
For ¹ = .5, we saw in Example 1 that p value conditioning
was clearly the preferred method of conditioning. For arbi-
trary choices of ¹ , ancillary choices of S are available, but
are quite complicated. Furthermore, for cases in which the
computations could be performed (e.g., ¹ = 1=3 or ¹ = 2=3),
the resulting conditional error probabilities exhibited very
unsatisfactory behavior. The tests TI and TC can also be de-
� ned for general ¹ , but exhibit exactly the same di culties
as observed for the case ¹ = 1=2. In contrast, the p value
conditioning yields reasonable conditional error probabili-
ties for all values of ¹ . In part, this is indicated by the fact
that these conditional error probabilities have the simul-
taneous justi� cation of being objective Bayesian posterior
error probabilities; methodology that arises separately from

pure frequentist and pure Bayesian arguments inherits the
attractive properties of both schools. Thus, we henceforth
consider only p value conditioning.

Determination of TP for arbitrary � xed ¹ , 0 < ¹ < 1,
is identical to the analysis in Example 1. The likelihood
ratio of H0 to H1 is now L(p) = ¹ ¡ 1p1 ¡ ¹ , and we again
use the conditioning statistic S = maxfp0; p1g, where p0

is the p value when testing H0 versus H1, and p1 is the p-
value when testing H1 versus H0. The resulting conditional
frequentist test is:

TP =

8
>>>>>>><

>>>>>>>:

if pob s µ C, reject H0 and report Type I
conditional error probability
¬ ¹ (pob s ) = (1 + L(pob s )

¡ 1) ¡ 1 ;

if pob s > C, accept H0 and report Type II
conditional error probability
­ ¹ (pob s ) = (1 + L(pob s ))

¡ 1;

(13)

where C is the solution of the equation C = 1 ¡ C ¹ .
The details of this test are not actually relevant for our

purposes here. We need only the fact, following from (7),
that, for pob s < e ¡ 1,

inf
¹

¬ ¹ (pob s ) = 1 +
1

inf ¹ L(pob s )

¡ 1

= 1 +
1

¡ e pob s log(pob s )

¡ 1

. (14)

Recall that our goal was to provide a frequentist calibration
for the common approach of reporting a p value when re-
jecting H0. The frequentist test TP will, upon rejecting H0,
report an error probability that is guaranteed to be bigger
than the right hand side of (14). Hence this bound, which
is that in (3), provides the desired calibration.

Many frequentists might feel that this calibration is too
small, in that the actual frequentist error rate is larger
than the bound. (Frequentists typically want to report upper
bounds on the error probability, not lower bounds.) Indeed,
when pob s = .05, all we are really saying is that the actual
frequentist error probability is some number larger than the
calibration ¡ epob s log(pob s ) = .289. For those not satis� ed
with this statement, and who want to produce a real frequen-
tist error probability as opposed to a lower bound, we rec-
ommend use of the general conditional frequentist testing
paradigm discussed by Berger, Boukai, and Wang (1997)
and Dass and Berger (1998). (We do not recommend the
alternative “solution” of saying that .289 cannot be used
because it is too small as an error rate, so that the original
pob s = .05 should be reported instead!)

3.1.3 Calibration for Nonparametric Alternatives With
Decreasing Failure Rate

The Beta alternatives in Section 3.1.1 are a rather re-
strictive class, and it is of interest to see if the bounds in
(7) and (14) hold more generally. Instead of working with
p and its distribution f(pj¹ ), it is more convenient to con-
sider Y = ¡ log p and its distributions under the null and
alternative hypotheses. If p has the Beta(¹ ; 1) distribution
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given in (6), then

PrfY > yg = Prfp < e¡ yg = e ¡ ¹ y ;

so that Y has an Exponential(¹ ) distribution (and, of course,
the null hypothesis again obtains for ¹ = 1).

A reasonable requirement is that the distribution of Y ,
under the alternative hypothesis, have a decreasing (nonin-
creasing) failure rate. This is equivalent to requiring that the
distribution of Y ¡ y j Y >y be stochastically increasing with
y. In terms of p = e¡ y , the requirement of decreasing fail-
ure rate for Y means that the distribution of p

p0
j p < p0 is

stochastically decreasing with p0. In particular, this implies
that, for any � xed p0, the probability Prfp < 1

2
p0jp < p0g

increases as p0 goes to 0; this is a natural condition im-
plying that the mass under the alternative is appropriately
concentrated near zero.

Lower bound on the Bayes factor: Assume, accordingly,
that the failure rate function

h1(y) =
f1(y)R 1

y f1(z)dz
;

for the density, f1, of Y under H1, has a decreasing failure
rate. Then

f1(y) = h1(y) exp ¡
Z y

0

h1(z)dz

µ h1(y) expf¡ yh1(y)g ;

from which it follows that the Bayes factor of H0 to H1

satis� es

B =
e ¡ y

f1(y)
¶ e¡ y

h1(y) expf¡ yh1(y)g
¶ e y e ¡ y for y ¶ 1 ;

and B = 1 otherwise, the inequalities being sharp. Since
this lower bound holds for any density in the (now non-
parametric) class of alternatives, it will also hold for any
Bayes factor with respect to a prior over that class. Trans-
forming back to p yields exactly the same bound as in (7).
This lower bound is thus valid over a very large class of
nonparametric alternatives and priors.

Lower bound on the conditional frequentist Type I error
probability: The conditional frequentist argument for the
nonparametric alternatives proceeds exactly as in Section
3.1.2. Indeed, if the density, f1(y) of Y = ¡ log(p) has
nonincreasing failure rate, the analogue of (14) is

inf
f1

¬ (yob s ) = 1 +
1

e ¡ yobs = supf1
f1(yob s )

¡ 1

= 1 +
1

eyob s e¡ yobs

¡ 1

. (15)

Transforming back to pob s yields (14) as the lower bound
on the conditional Type I error probability.

Verifying the decreasing failure rate property: There is a
relatively simple method for checking that Y has decreas-
ing failure rate, given only the original densities of the test
statistic T (X) under H0 and H1, which will be denoted by

f0(t) and m(t), respectively. Let F0 and M denote the cdf’s
corresponding to f0 and m, respectively.

If p is de� ned as in (1), the survival function of Y =
¡ log(p(X)), under the alternative, is given by

PrfY > yg = Prfp < e¡ yg = 1 ¡ M (F ¡ 1
0 (1 ¡ e ¡ y));

(16)

so that its density is given by

f1(y) =
m(F ¡ 1

0 (1 ¡ e¡ y))

eyf0(F ¡ 1
0 (1 ¡ e ¡ y))

. (17)

The hazard rate function of Y is given by the ratio of (17)
and (15). Di¡erentiation shows that this hazard rate function
is nonincreasing if and only if

m(t)

1 ¡ M (t)

f0(t)

1 ¡ F0(t)
(18)

is nonincreasing. Thus, the applicability of the bound in (7)
can be assured by veri� cation that (18) is nonincreasing.

In the Bayesian case, the density m(t) will arise as
the Bayesian marginal or predictive density m(t) =R

f (tj ³ ) º ( ³ ) d³ , corresponding to the alternative H1 : f (tj³ )
and under the prior º ( ³ ).

Example 2. Consider the situation of Section 2, with
iid Normal(³ ; ¼ 2) data, H0 : ³ = 0, H1 : ³ 6= 0, and
T (X) =

p
nj ¹X j=¼ . Suppose that the prior for ³ under H1

is Normal(0; v2). Then an easy computation shows that the
ratio in (18) is given by

R(t)= c R
t

c
; (19)

where c = (1 + nv2=¼ 2)1=2 and R(t) = (1 ¡ ©(t)=¿ (t))
(with © and ¿ denoting the standard normal cdf and density,
respectively) is Mill’s ratio, or the reciprocal of the hazard
rate function of the standard normal. Figure 3 graphs the
function in (19) for various values of c, and all appear to
be decreasing to their limiting value 1=c2.

3.2 Bayesian Justi� cation Via Parametric Testing

It is natural to ask whether the bound B ¶ ¡ ep log p
is also reasonable in parametric testing scenarios involving
composite alternatives. This is relatively easy to study from
the Bayesian perspective, and so we restrict the analysis
here to that situation. [For parametric conditional frequen-
tist testing with composite alternatives, one would have to
employ the more involved techniques of Berger, Boukai,
and Wang (1997) and Dass and Berger (1998).] Consider
� rst the standard normal example.

Example 3. Consider the normal testing scenario in Ex-
ample 2. Berger and Sellke (1987) provided lower bounds
for the Bayes factor of H0 to H1 when º ( ³ ) belongs to the
following possible classes of priors:

Norm al = f º : º ( ³ ) = Normal(0; v2); v > 0g
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Figure 3. Plots of the ratio of Mill’s ratios in (19).

US = f º : º ( ³ ) is unimodal and

symmetrical about 0g

S ym = f º : º ( ³ ) is symmetrical about 0g.

Table 3 displays these lower bounds for various p values,
along with the calibration ¡ ep log p.

A striking feature of Table 3 is the close agreement be-
tween the lower bounds on the Bayes factors for the class

US and the proposed calibration, ¡ ep log p. This class of
priors is often argued to contain all objective and sensi-
ble priors, so that the close agreement lends strong support
to the appropriateness of the calibration. Incidentally, the
close agreement also suggests that the hazard rate function
for the alternatives at which the in� mum is attained must be
nearly constant, and this can indeed be shown numerically.
The class S ym clearly falls outside the conditions under
which the calibration bound is valid, but this is arguably a
much too large class of priors.

The next example considers the multivariate normal sit-
uation. Comparisons between p values and Bayes factors
can be di cult in higher dimensions, so this example is of
considerable interest in indicating whether or not the pro-
posed calibration is also reasonable in higher dimensions
(although note that the nonparametric arguments of Sec-
tion 3.1 would equally well apply to higher dimensional
situations).

Example 4. Assume that the null model for the data
X = (X1; . . . ; Xk) is Nk(0; I) and that the alternative is
Nk( ; I), where I is the k × k identity matrix. (Without loss

Table 3. In� mum of Bayes factors, p Values and Their Calibrations

p .1 .05 .01 .001
ep log p .6259 .4072 .1252 .01878

Normal .7007 .4727 .1534 .02407

US .6393 .4084 .1223 .01833
Sym .5151 .2937 .0730 .00887

of generality, we assume that there is only the single vector
observation.) The prior distribution under the alternative is
assumed to belong to the following class of scale mixtures
of normals:

jv2 ¹ Nk(0; v2I)

º (v2) is a nonincreasing density on (0; 1). (20)

The reason we do not consider the conjugate class of
Nk(0; v2I) priors here is that such priors concentrate most
of their mass very near the surface of the ball of radius
v
p

k in higher dimensions, which does not seem appropri-
ate. In contrast, the priors in (19) can assign considerable
mass elsewhere.

Finding the lower bound on the Bayes factor over the
class in (19) is equivalent to � nding the lower bound over
the smaller class in which º (v2) is Uniform(0; r), r > 0.
(This is so because any nondecreasing density can be writ-
ten as a mixture of uniform distributions, and the linear
functional m(x) =

R
f(xj ) º ( jv2) º (v2)dv2 of º (v2) is

thus maximized over these extreme points.) The Bayes fac-
tor of H0 to H1, corresponding to the uniform prior, is (for
k > 2)

Br =
r ba e¡ b

(a) [ G (bja; 1) ¡ G ( b
1+ r

ja; 1)]
; (21)

where a = k=2 ¡ 1, b = jjxjj2=2, and G (¢ja; 1) is the Gamma
distribution function with parameters a and 1. The in� mum,
B, of Br over r is then easy to compute numerically. Table

Table 4. B, p Values, and Their Calibrations for Various Dimensions k

p .1 .05 .01 .001

ep log p .6259 .4072 .1252 .01878
k = 1 .7367 .5110 .1729 .02787
k = 3 .6419 .4281 .1371 .02101
k = 6 .6062 .3989 .1253 .01894

k = 15 .5750 .3748 .1165 .01748
k = 30 .5603 .3643 .1129 .01695
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4 gives the values of B for various p values, p, and various
dimensions, k. The calibration seems to maintain a very
close similarity to the lower bounds on the Bayes factors for
any dimension, lending considerable additional credibility
to its use.

4. CONCLUSIONS

The most important conclusion is that, for testing “pre-
cise” hypotheses, p values should not be used directly, be-
cause they are too easily misinterpreted. The standard ap-
proach in teaching—of stressing the formal de� nition of
a p value while warning against its misinterpretation—has
simply been an abysmal failure. In this regard, the cali-
brations proposed in (2) and (3) are an immediately useful
tool, putting p values on scales that can be more easily in-
terpreted.

Although the proposed calibrations ameliorate the worst
features of p values, they can themselves be criticized for
being biased against the null hypothesis; recall that the cali-
brations arose from bounds on Bayes factors or conditional
Type I error probabilities that were least favorable to the
null hypothesis. That such bounds are still much larger than
p values indicates the severe nature of the bias against a
precise null that can arise due to the p value fallacy.

Although the calibrations are a considerable improve-
ment over p values, this issue of bias against the null
leads us to instead recommend objective Bayesian or con-
ditional frequentist procedures, for situations when the al-
ternative hypothesis is speci� ed. References to the devel-
opment of such procedures include, on the Bayesian side,
Je¡reys (1961), Kass and Raftery (1995), O’Hagan (1995),
and Berger and Pericchi (1996, 1998); and, on the condi-
tional frequentist side, Berger, Brown, and Wolpert (1994),
Berger, Boukai, and Wang (1997), Dass and Berger(1998),
and Dass (1998).

One scenario in which we would de� nitely recommend
use of the calibrations is when investigating � t to the null
model, with no explicit alternative in mind. The lack of an
alternative precludes use of the objective Bayesian or condi-
tional frequentist procedures mentioned above. See Bayarri
and Berger (1999, 2000) for further discussion of this issue.

[Received April 2000. Revised August 2000.]
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