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Probability

The outcome of an experiment is called an event
Tossing a coin
There will be a major terrorist attack this week
A women will develop ovarian cancer in the next 5
years

The probability of an event A, P (A), is a non-negative
real-valued function of events that satisfies certain
axioms that permit algebraic manipulation of
probabilities.

Frequency and Long-Run Probability
Subjective Probability

Probability provides a natual language for communicating
uncertainty
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Probability: Frequentist’s Views

If an event can occur in a finite number of ways then the
frequency probability of the event is ratio of the number of
ways that the event can occur to the total number of
possible events.

Counting: equally likely outcomes (card and dice
games, sampling)

Long-Run Frequency: The long-run or empirical
probability of an event is the limit of the proportion of
times that the event has occurred as the number of
trials increases.
Hurricane in September? Relative frequency from
“similar” years

Not all events are repeatable! How should we proceed?
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Subjective Probability

Subjective probability is expresses as a measure of belief;
may combine

expert opinion

computer simulations

historic data from not necessarily identical conditions

applies to unique events – probability of terrorist attacks –
where long run frequencies are unavailable
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Belief Functions

A belief function is a function that assigns numbers to
statements such that the larger the number, the higher the
degree of belief. Belief functions allow you to combine
evidence from different sources and arrive at a degree of
belief (represented by a belief function) that takes into
account all the available evidence.
Statements F , G, and H.

Be(F ) > Be(G) implies that we would prefer to bet that
F is true over that G is true

Be(F | H) > Be(G | H) implies that if we know that H
is true, then we would prefer to bet that F is also true
over that G is true.
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Axioms of Beliefs

B1 Be(not H | H) ≤ Be(F | H) ≤ Be(H | H)

B2 Be(F or G | H) ≥ max{Be(F | H), Be(G | H)}

B3 Be(F and G | H) can be derived from Be(F | H) and
Be(G | F and H).

Probability Axioms (Conditional Version)

P1 0 = P(HC | H) ≤ P(F | H) ≤ P(H | H) = 1

P2 P(F ∪ G | H) = P(F | H) + P(G | H) if F ∩ G = ∅

P3 P(F ∩ G | H) = P(F | H)P(G | F ∩ H)

Probability functions satisfy belief axioms
Dempster-Shafer theory generalization of Bayes.
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Probability

Events E, and a partition of H into disjoint sets Hi

Hi ∩ Hj = ∅ (1)

∪iHi = H (2)

P (Hj)

P (E | Hj)

If E occurs, then how do we update our beliefs about Hi?

Bayes Theorem
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Bayes’ Theorem

Bayes’ Theorem reverses the conditioning:
What is probability of Hi given that E has occurred?

P (Hi | E) =
P (Hi ∩ E)

P (E)
(3)

=
P (E | Hi)P (Hi)

P (E)
(4)

Law of Total Probability:

P (E) =
∑

j

P (E | Hj)P (Hj)
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Twin Example

Twins are either identical (single egg that splits) or
fraternal (two eggs)

Sexes: Girl/Girl GG, Boy/Boy BB, Girl/Boy GB or
Boy/Girl BG

GG or BB twins could be identical (I) or fraternal (F )

Given that I have GG twins, what is the probability that
they are identical: P (I | GG) ?
Easy to calculate the probability in the other way
P (GG | I)
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Identical Twins

P (I | GG) =
P (GG | I)P (I)

P (GG | I)P (I) + P (GG | F )P (F )

P (I) is the overall probability of having identical twins
(among pregnancies with twins). Real-world data
shows that about 1/3 of all twins are identical twins.
This is our prior information.

If the twins are identical, they are either two boys or
two girls∗ It is reasonable to assume that the two
cases are equally probable* P (GG | I) = 1/2

In the case of non-identical twins, the four possible
outcomes are assumed to be equally likely, so
P (GG | F ) = 1/4
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Result

Substituting the probabilities

P (GG) = 1/2 ∗ 1/3 + 1/4 ∗ 2/3 = 1/3 (5)

P (I | GG) =
P (GG | I)P (I)

P (GG)
=

1/2 ∗ 1/3

1/3
= 1/2 (6)

The probability that the twins are identical twins, given
that they are both girls is 1/2

The result combines experimental data (two girls) with
prior information (1/3 of all twins are identical twins).
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Bayes Inference

1763 – paper authored by Thomas Bayes was
published “Bayes Theorem”

how to make statistical inferences that build upon
earlier understandings of a phenomenon and how to
formally combine that earlier knowledge with currently
measured data in a way that updates the degree of
belief of the experimenter

This procedure of updating is now called Bayesian
Inference
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Statistical Analysis

Statistical induction is the process of learning about the
general characteristics of a population from a subset
(sample) of its members

“Characteristics” often expressed in terms of
parameters “θ”

measurements on the subset of members given by
numerical values Y

Before the data are observed, both Y and θ are
unknown

probability model for observed data if we knew θ is the
truth

What if we have prior information about θ?
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Infection rate

Interest is in the prevalence of a disease (say H1N1 flu) in
a region. Rather than using a census of the population,
take a random sample of n individuals.

θ: fraction of infected individuals

Yi indicator that ith individuals in the sample of n is
infected

Prior information on θ

Given data Yi, what the new beliefs about θ?
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Bayesian Inference

Bayesian inference provides a formal approach for
updating prior beliefs with the observed data to quantify
uncertainty a posteriori about θ

Prior Distribution p(θ)

Sampling Model p(y | θ)

Posterior Distribution:

p(θ | y) =
p(y | θ) p(θ)∫

Θ
p(y | θ) p(θ) dθ

(for discrete support for θ replace integral with sum)
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Analysis Goals

Bayesian methods go beyond the formal updating of the
prior distribution to obtain a posterior distribution

Estimation of uncertain quantities (parameters) with
good statistical properties

Prediction of future events

Tests of hypotheses

Making Decisions
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Software

R
EDA
Frequentists analysis
Simulation
Graphics

WinBUGS - scripting langauge for “Bayes Using
Gibbs Sampling”

simulate priors
Posterior inference using several methods
easy to modify models/prior distributions
May be called from R

Install R for next Tuesday
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