A Bayesian Approach to Outlier Detection and Residual Analysis

Kathryn Chaloner, Rollin Brant
Biometrika, Volume 75, Issue 4 (Dec., 1988), 651-659.

Stable URL:
http://links.jstor.org/sici?sici=0006-3444%28198812%2975%3A4%3C651%3AABATOD%3E2.0.CO%3B2-U

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Biometrika is published by Biometrika Trust. Please contact the publisher for further permissions regarding the use
of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/bio.html.

Biometrika
©1988 Biometrika Trust

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Mon Apr 8 18:26:06 2002



Biometrika (1988), 75, 4, pp. 651-9
Printed in Great Britain

A Bayesian approach to outlier detection and residual analysis
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SUMMARY

An approach to detecting outliers in a linear model is developed. An outlier is defined
to be an observation with a large random error, generated by the linear model under
consideration. Outliers are detected by examining the posterior distribution of the random
errors. An augmented residual plot is also suggested as a graphical aid in finding outliers.

Some key words: Leverage; Linear model; Posterior distribution; Residual plot.

1. INTRODUCTION

We propose a precise definition of an outlier in a linear model which appears to lead
to simple ways of exploring data for the possibility of outliers. The definition is such
that, if the parameters of the model are known, then it is also known which observations
are outliers. Alternatively, if the parameters are unknown, the posterior distribution can
be used to calculate the posterior probability that any observation is an outlier. In a
linear model with normally distributed random errors, ¢;, with mean zero and variance
o?, we declare the ith observation to be an outlier if |¢;|> ko for some choice of k. The
value of k can be chosen so that the prior probability of an outlier is small and thus
outliers are observations which are more extreme than is usually expected. Realizations
of normally distributed errors of more than about three standard deviations from the
mean are certainly surprising, and worth further investigation. Such outlying observations
can occur under the assumed model, however, and this should be taken into account
when deciding what to do with outliers and in choosing k. Note that ¢; is the actual
realization of the random error, not the usual estimated residual &;.

The problem of outliers is studied and thoroughly reviewed by Barnett & Lewis (1984),
Hawkins (1980), Beckman & Cook (1983) and Pettit & Smith (1985). The usual Bayesian
approach to outlier detection uses the definition given by Freeman (1980). Freeman
defines an outlier to be ‘any observation that has not been generated by the mechanism
that generated the majority of observations in the data set’. Freeman’s definition therefore
requires that a model for the generation of outliers be specified and is implemented by,
for example, Box & Tiao (1968), Guttman, Dutter & Freeman (1978) and Abraham &
Box (1978). Our method differs in that we define outliers as arising from the model under
consideration rather than arising from a separate, expanded, model. Our approach is
similar to that described by Zellner & Moulton (1985) and is an extension of the philosophy
of Zellner (1975). Geisser (1980, 1987, 1988a, b) develops a different set of diagnostic
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tools, called predictive discordancy diagnostics, which also do not require a model for
the generation of outliers.

2. A METHOD OF OUTLIER DETECTION

Assume that the model under consideration is the usual linear model with parameters
6"=(0,,...,0,) and normally distributed, N(0, o), independent random errors &' =
(&1,...,¢&,). The nxp design matrix is X with observations taken at x,,...,x, and
y = X0+ &. To compute the posterior probability that |¢,] is greater than ko we need the
posterior distribution of &, p(e|y). This posterior distribution is derived assuming an
improper prior distribution of Zellner (1975) and can be derived in a similar way assuming
a normal-gamma prior distribution.

Define 7=0"2 and let R be a specified positive-definite matrix. The normal-gamma
conjugate prior distribution takes 6 to have a normal distribution, conditional on 7, with
mean m, and variance 7 'R™". The prior distribution of 7 is a gamma distribution with
parameters a and b; that is p(7)c7*~' e™*" and the prior mean is ab™'. The posterior
distribution of 6, conditional on 7, is a normal distribution with mean m,=
(R+XTX)'(Rmy+ X"y) and covariance matrix 7~ '(R+ X "X ). The posterior distribu-
tion of 7 is a gamma distribution with parameters a, and b,, where a,=a+3n and

b, =b+3{(y —xm,)"y +(mo—m,)"Rm}.

The posterior distribution of ¢ is easily derived by writing € = y — Xe, and noting that ¢
is a linear function of 6. The distribution of ¢ is singular as its mass is on a p-dimensional
space only. Let H = X(R+ X"X)™'X. Then, conditional on 7, the posterior distribution
of ¢ is a singular multivariate normal distribution with mean € = y — Xm, and covariance
matrix 7~ ' H. Denote the elements of H by h;. Each ¢, fori=1, ..., n, has a t distribution
with location &;, precision a,/(b,h;;), and 2a, degrees of freedom (DeGroot, 1970, p. 42).
The covariance matrix of ¢ is proportional to H.

To compute the posterior distribution corresponding to the improper prior distribution
p(6,7)=7"let R>0, a>—3p and b->0. Let

6=(X"X)"'X"y, s’=(y-X8)"(y-X8)/(n—p);
then, as DeGroot (1970, p. 252) shows, the posterior distribution of ¢ is again a multivariate
t distribution on a p-dimensional space, with
é=y-X6, H=X(X"X)"'X, a,=}n-p), b=3(n-p)s’

To detect which observations are outliers, define the probability p; to be pr(|e;|> koly),
the posterior probability that the ith observation is what we have defined to be an outlier.
Let ®(z) be the standard normal distribution function. Further let

zl=(k_€1\/7)/(\/hii)9 22=('—k—§i\/7)/(‘/hii); (1)

then we have

pi=pr(le|> koly) = I {1-®(z,) + ®(2,)}p(7ly) dr. (2)

The p’s can be compared to the prior probability 2®(—k). Points with a high
posterior probability p; of being an outlier will have a large ||, or a large h;;, or both.
When |£,] is large this suggests |g;| is large. When h;; is large there is uncertainty about
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g;. The quantity h;; is often referred to as leverage, for example by Cook & Weisberg
(1982, p. 15), as points with large h; are potentially highly influential.

In addition to examining the p,’s we can also examine the joint posterior probability
that two observations are outliers. Define z,; and z,; to be the values of z, and z, defined
in (1) for the ith observation and z,; and z,; the corresponding values for the jth
observation. In addition, define p; to be hy/v/(h;h;), the correlation between &; and &;.
Let B(a, b, p) be the probability, for a standard bivariate normal random variable with
correlation p, that the first coordinate is larger than a and the second is larger than b.
Then the posterior probability that ¢; and ¢; are both outliers is

py =pr{|&|> ko and |g|> koly)
= J {B(Zlia Zyjs Pij)+B(_22i, —2Z3j, pij)+B(zli’ —2Zyj, _pij)

+ B(—zy;, Z1js —Pij)}P(TI}’) dr. (3)

The p;’s can be compared to the prior probability {2®(—k)}*. In the presence of
multiple outliers masking is said to occur when a test for a single outlier does not detect
one outlier in the presence of another outlier. In the approach described here masking
could be said to occur when one of the individual probabilities p;, say, does not indicate
an outlier, but for some j the probability p; is larger than the prior probability of two
outliers. This will necessarily entail some correlation between ¢; and ¢;. Such masking
occurs in an example in § 5.

The usual residuals £; are the posterior means of the &; and can be thought of as point
estimates of the ¢;. Interval estimates of &; are easily constructed. Let t(3a, n — p) be the
upper 3 point for a ¢ distribution with n —p degrees of freedom; then a (1 — ) highest
posterior density interval for ¢; is & +t(3a, n— p)svh;. These intervals can be added to
a residual plot; for examples, see § 5. The plots can be thought of as describing the
marginal posterior distributions of the ¢;, the realized errors. This is a different interpreta-
tion from the usual approach of thinking of a residual plot as representing the sampling
distribution of the &;.

The posterior distribution of the realized errors is quite different from the sampling
distribution of the £;. Note that the posterior distribution is over p dimensions whereas
the sampling distribution of the &; is over (n —p) dimensions. The posterior distribution
of the ¢; treats the £; and 0 as fixed and the uncertainty is in X6 over the p-dimensional
space which is orthogonal to the space spanned by the &. In contrast the sampling
distribution of the £; has mean zero and a covariance matrix proportional to (I — H).
The residual plot, as a representation of the posterior distribution of the ¢;, represents
p correlated quantities, whereas the frequentist interpretation of the residual plot rep-
resents n —p correlated quantities.

3. CHOICE OF k

The value of k can be chosen so that the prior probability of no outliers is large, say
0-95. This gives k=®'{0-5+13(0-95"")}, which for n =20 is k=3-0, for n =50 is k =3-3,
for n =1001is kK =3-5 and for n = 1000 is k = 4-0. Any observation with posterior probability
of being an outlier larger than the prior probability 2d(—k) would be suspect.

Alternatively, if the model under consideration is required to describe the data, rather
than being considered as a stochastic model, then k = 2 might be used to find observations
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which are not well described by the data no matter what the sample size. If more than
5% have high posterior probability of being greater than k =2 standard deviations then
this is cause for concern in that the model does not describe the complete data set well.

4. OTHER METHODS

Standardized residuals are often used to detect outliers. These standardized residuals,
r;=&/{sv(1—h;)}, have a constant sampling variance and are often plotted in residual
plots instead of the ;. A monotone transformation of r;, called an externally standardized
residual, forms the basis of an outlier test. Let y;, be the observations excluding y;; then
the externally standardized residuals are t; = &;/{s.;,V(1 — h;)}, where s;, is based on the
regression of y;, only. The distribution of ¢ is a ¢ distribution with (n—p—1) degrees
of freedom under the null hypothesis of no shift in the mean of the ith observation.
The Bonferroni inequality is commonly used to provide critical values (Weisberg, 1985,
Ch. 5).

Another approach is Geisser’s (1980, 1987, 1988a, b) predictive method, based on the
predictive distribution of the ith observation given y;), also discussed by Pettit & Smith
(1985). The conditional predictive ordinate, c;, is the predictive density of the ith
observation given y;), evaluated at the observed value y;; thatis ¢; = p(y:|y;)). The values
¢; give a ranking of the observations, with the most discordant having the smallest value
of ¢;. The ¢; work best for situations with y; independent and identically distributed
where p(y:|yi) has the same scale factor for all i. Geisser (1987) suggests a further
diagnostic measure which he recommends for regression problems where p(y;|y;) have
different scale factors. This measure is the tail area of p(y;|y;), and is interpreted as a
p-value for a ‘predictive discordancy test’. This is the probability, under p(y:|y;), of an
observation with a smaller ¢; than that of the observed y;, and will be denoted pd;. In
the case of the linear model with a noninformative prior distribution it can be shown
that algebraically the predictive discordancy diagnostics are closely related to standardized
residuals. The value of pd;, for example, is the p-value from the outlier test based on
comparing f;, the externally standardized residual, to its ¢-distribution, not using the
Bonferroni inequality. Similarly, the value of ¢; is exactly the density of a ¢ distribu-
tion with (n—p—1) degrees of freedom evaluated at ¢;, multiplied by a scale factor
(1-hy)¥/ 5. Other related conditional predictive discordancy diagnostics are suggested
and discussed by Geisser. These diagnostics are very general in that they can be applied
to many different models.

Our posterior probabilities are based on all the data y rather than y;,. Conditioning
on all the data including the ith case is very natural when interest is in & =y, —x] 6, a
function of y;. The observation y; provides almost the only information available about
the location of the realized error ;. Indeed, if the precision, 7, is known then the posterior
distribution p(e;|y;) is exactly the prior distribution of ;. If 7 is unknown the posterior
distribution p(e;|y.)) has a mean of zero and a variance which does not approach zero
as the sample size increases. Our posterior probability is computed under the assumption
that the model is correct and using all the data is not unreasonable under that assumption.

5. EXAMPLES

The use of the residual plot and the diagnostic posterior probabilities will now be
illustrated using two examples. The residuals and highest posterior density intervals are
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plotted against case number for both examples, but they could also have been plotted
against the fitted values or values of an explanatory variable. The posterior distribution
from the noninformative prior distribution is used in both examples. The first example
uses the Gesell adaptive score data (Mickey, Dunn & Clark, 1967) given in Table 1.

Setting the prior probability of no outliers to be 0-95 gives k=3-0 to define an
outlier. Table 2 gives the posterior probabilities pr (|e;|>30o|y) and, for illustration,
pr (|e:|>20ly); these are denoted as p(3); and p(2); respectively. Other diagnostic
measures are also given in Table 2 for comparison. Figure 1 is the augmented residual
plot of &; against the case number, i, with 95% highest posterior density intervals drawn
in. The plot provides a simple summary of the information in the data about the &;’s.
Observation 19 is noticeable as a point with large & and small posterior variance.
Observation 18 has a residual with large posterior variance.

Table 1. Gesell adaptive score data: y; is adaptive score and x; is age, in
months, at first word

i Vi Xi i Vi Xi i Yi X;
1 95 15 8 100 11 15 102 11
2 71 26 9 104 8 16 100 10
3 83 10 10 94 20 17 105 12
4 91 9 11 113 7 18 57 42
5 102 15 12 96 9 19 121 17
6 87 20 13 83 10 20 86 11
7 93 18 14 84 11 21 100 10

Table 2. Table of residuals £;, leverages h;, posterior probabilities pr (|e;|> 2¢o|y) = p(2);
and pr (|e;|>30|y) = p(3),, standardized residuals r;, externally standardized residuals t;,
conditional predictive ordinates c;, and predictive discordancy p-values pd,, for Gesell adaptive

score data
i & hyi p(2); p(3); r; t (& pa;
1 2:03 0-05 0-19 0-18 0-0333 0-8561
2 -9-57 0-15 0-0031 —0-94 —-0-94 0-0207 0-3589
3 —15-60 0-06 0-0391 —1-46 -1-51 0-0114 0-1482
4 —-8-73 0-07 —-0-82 —-0-81 0-0242 0-4261
5 9-03 0-05 0-84 0-83 0-0241 0-4158
6 -0-33 0-07 —-0-03 —-0-03 0-0334 0-9759
7 3:41 0-06 0-32 0-31 0-0321 0-7592
8 2-52 0-06 0-24 0-23 0-0329 0-8209
9 3-14 0-08 0:30 0-29 0-0320 0-7752
10 6:67 0-07 0-63 0-62 0-0277 0-5445
11 11-02 0-09 0-0016 1-05 1-05 0-0194 0-3072
12 -3-73 0-07 -0-35 -0-34 0-0316 0-7357
13 —-15-60 0-06 0-0391 —1-46 -1-51 0-0148 0-1482
14 —13-48 0-06 0-0057 -1-26 -1-28 0-0154 0-2169
15 4-52 0-06 0-42 0-41 0-0310 0-6844
16 1-40 0-06 0-13 0-13 0-0334 0-9000
17 8:65 0-05 0-81 0-80 0-0247 0-4351
18 -5-54 0-65 0-0329 0-0010 —0-85 —0-85 0-0144 0-4091
19 30-28 0-05 0-9261 0-2776 2-82 3-61 0-0002 0-0020
20 —-11-48 0-06 -1-07 -1-08 0-0192 0-2959
21 1-40 0-06 0-13 0-13 0-0334 0-9000

Posterior probabilities less than 10~ have been omitted.
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The prior probability of |&;|> 30 is 0-0027 and observation 19 is the only observation
with posterior probability larger than this of being an outlier, with a posterior probability
of 0-28. Observation 18 is associated with the next largest probability of 0-0010 but this
is, however, smaller than the prior probability. Observation 18 has largest leverage, hs,
and although there is uncertainty about &,5, the uncertainty does not indicate that
observation 18 is an outlier. All other observations have posterior probability of being
an outlier less than 107*. The ordering of the posterior probabilities depends on k. For
k =2 the ordering is different from that for k =3.

The standardized residuals and predictive discordancy diagnostics are shown for
comparison in Table 2. The outlier test using ¢,, and the Bonferroni inequality is just
significant at a 0-05 level. The predictive discordancy diagnostics identify observation 19
as the most discordant. It is not clear how small either ¢; or pd; should be to indicate
an observation is discordant or unusual but the values associated with observation 19
are much smaller than the values for the other observations. All methods therefore point
to observation 19 as an outlier.

Our second example, a more complicated one, is the stack loss data from Brownlee
(1965, p. 454), with three explanatory variables, discussed by Atkinson (1985), and used
by Atkinson (1986) and Hawkins, Bradu & Kass (1984) to demonstrate masking and the
detection of multiple outliers.

The residual plot for the stack loss data augmented with highest posterior density
intervals is given as Fig. 2. Taking the prior probability of no outliers to be 0-95 again
leads to k=3-0. Table 3 gives the posterior probabilities for being an outlier for all
observations together with the residuals &;, standardized residuals r; and ¢;, and predictive
discordancy diagnostics ¢; and pd,.

Fig. 1 Fig. 2

T |

eh
Pt
]

0 5 10 15 20 25 0 5 10 15 20 25
Case number Case number

Fig. 1. Plot of residuals against case numbers with 95% highest posterior density regions: Gessel adaptive
score data.
Fig. 2. Plot of residuals against case number with 95% highest posterior density regions: stack loss data.

Figure 2 indicates that observation 21 has a large £; and also a relatively large posterior
variance. The posterior probability that observation 21 is an outlier is 0-11 and is large
compared to the prior probability of 0-0027. Observation 4 has the next largest posterior
probability of 0-0038, also larger than the prior probability.

To examine further observations 4 and 21 and to examine the possibility of additional
outliers, consider the posterior probabilities p; as given in (3) for all pairs i and j, for
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Table 3. Table of residuals &, leverages h;, probabilities pr(|e;|>20|y)=p(2); and
pr(|e:|>30|y) =p(3):, standardized residuals r., externally standardized residuals t,,
conditional predictive ordinates c;, and predictive discordancy p-values pd;, for the stack

loss data
i & h;; p(2), p(3); r; L (A pd;
1 3.23 0-30 0-0385 0-0002 1-19 1-21 0-0488 0-2440
2 -1-92 0-32 0-0067 -0-72 -0-71 0-0760 0-4909
3 4-56 0-17 0-1008 0-0004 1-55 1-62 0-0317 0-1252
4 5-70 0-13 0-2806 0-0038 1-88 -2-05 0-0169 0-0569
5 -1-71 0-05 —-0-54 —-0-53 0-0995 0-6030
6 -3-01 0-08 0-0004 —-0-97 —-0-96 0-0719 0-3500
7 -2-39 0-22 0-0043 —0-83 —0-83 0-0743 0-4210
8 -1-39 0-22 0-0004 —-0-48 -0-47 0-0929 0-6421
9 -3-14 0-14 0-0055 —-1-05 -1-05 0-0640 0-3100
10 1-27 0-20 0-0002 0-44 0-43 0-0960 0-6756
11 2-64 0-16 0-0021 0-88 0-88 0-0741 0-3927
12 278 0-22 0-0091 0-97 0-97 0-0660 0-3481
13 —-1:43 0-16 —-0-48 —-0-47 0-0967 0-6455
14 -0-05 0-20 -0-02 -0-01 0-1047 0-9867
15 2-36 0-19 0-0024 0-81 0-80 0-0772 0-4351
16 0-91 0-13 0-30 0-30 0-1050 0-7747
17 -1-52 0-41 0-0088 -0-61 —-0-60 0-0754 0-5572
18 —-0-46 0-16 -0-15 —-0-15 0-1065 0-8837
19 —-0-60 0-17 -0-20 -0-20 0-1047 0-8462
20 1-41 0-08 0-45 0-44 -0-1022 0-6636
21 -7-24 0-28 0-6174 0-1117 —-2-64 -3-33 0-0015 0-0042

Posterior probabilities less than 107 have been omitted.

i % j. Table 4 gives the seven values which are larger than the prior probability of 7-3 x 107°.
The ratio of the posterior probabilities to the prior probability and the posterior correla-
tions p; are also given. Examining these joint probabilities, p;, has led to the indication
that, in addition to observations 4 and 21 being outliers, 1 and 3 are also outliers. The
two observations 1 and 3 are difficult to detect and masking has occurred as both p, and
D; are less than the prior probability of 0-0027. The value of p, 3, the posterior correlation,
is 0-96. The high posterior correlation leads to a large posterior probability that both &,
and e, are large. This dependence must be present for such masking to occur.

Table 4. Table of posterior probabilities p;=

pr (|e:|>30 and |&;|>30|y) for the stack loss data,

for pairs with p; larger than the prior probability of

(0-0027)°. Also given is the odds ratio of posterior

probability to prior probability and p; the posterior
correlation between ¢; and ¢;

i,j Dij Pij/(0'0027)2 Pij
1,3 1-6x107* 22-1 0-96
1,4 4-5%107° 62 0-43
1,21 1-2x107° 17 0-40
2,21 8-9% 1076 12 0-37
3,4 1-2x107* 16-8 0-40
3,21 3-4x107° 4.7 0-58
4,21 2-8x1073 384-7 ~0-31
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The conditional probability that observation 4 is an outlier given that observation 21
is an outlier can also be obtained by dividing the joint probability p,,, by the marginal
probability p,,. This conditional probability is 0-0251, which is larger than the prior
probability of 0-0027 and also larger than the unconditional probability of 0-0038.
Observations 1, 3, 4 and 21 were identified as outliers by Atkinson (1986) who used this
data set to illustrate a method for detecting outliers based on a robust regression. Hawkins
et al. (1984), using a different method, find the same 4 outliers but give some evidence
that there may, perhaps, be more outliers and observation 2 may be suspect.

Comparing these posterior probability calculations to other methods, the largest stan-
dardized residual is t,, = —3-33. It is not clear what significance level to use for comparison,
but as k was chosen to give the prior probability of no outliers to be 0-95, we use an
overall level of 0-05. The outlier test for t,, is then not quite significant using the Bonferroni
inequality and therefore this test has not identified any outliers.

The conditional predictive ordinate and the predictive discordancy p-value both identify
observation 21 as the most discordant, with c,, and pd,; much smaller than the other
values. These diagnostics do not, however, clearly identify multiple outliers. Our method
has diagnosed a problem, if a regression model is used, with multiple outliers and masking.
The other methods, for detecting single outliers, do not clearly indicate the multiple
outliers.

In summary, we note that our diagnostic measure, the posterior probability, is appropri-
ate for situations in which there is no obvious way of modelling contaminants. Our
definition of an outlier is simple and requires that outliers are unusual and are outlying.
Other definitions, for example, a mixture model with inflated variance, are appropriate
if a model for such contamination is suggested by the information about the process
generating the data.
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