# Midterm Examination 

STA 205: Probability and Measure Theory
Wednesday, 2005 Mar 9, 2:50-4:05 pm

This is a closed-book examination. You may use a single one-sided sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss exam questions with others.

Unless a problem states otherwise, you must show your work to get partial credit. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, since I cannot give credit for solutions I do not understand. Good luck.


Problem 1: Let $(\Omega, \mathcal{F}, \mathrm{P})$ be the probability space $\Omega=\{a, b, c, d, e\}$ with just five points and sigma-field $\mathcal{F}=2^{\Omega}$.
a. (6) Define random variables $X$ and $Y$ by

$$
X(\omega)=\left\{\begin{array}{ll}
1 & \omega \in\{a, b\} \\
0 & \omega \notin\{a, b\}
\end{array} \quad Y(\omega)=\left\{\begin{array}{ll}
2 & \omega \in\{a, c\} \\
0 & \omega \notin\{a, c\}
\end{array} .\right.\right.
$$

Give explicitly (by listing all elements) the $\sigma$-fields $\mathcal{F}_{X}$ and $\mathcal{F}_{Y}$ generated by $X$ and $Y$, respectively.

$$
\begin{align*}
& \mathcal{F}_{X}=\{ \\
& \mathcal{F}_{Y}=\{
\end{align*}
$$

b. (4) Find the $\sigma$-field generated by $X$ and $Y, \mathcal{F}_{X, Y}=\mathcal{F}_{X} \vee \mathcal{F}_{Y}$ :
$\mathcal{F}_{X, Y}=\{$
Is this the same as $\sigma(Z)$, for $Z \equiv X+Y$ ? $\bigcirc$ Yes $\bigcirc$ No
c. (5) For numbers $\alpha, \beta \geq 0$ with $\alpha+\beta \leq 1 / 2$, let P be the probability measure on $\mathcal{F}$ determined by the relations
$\mathrm{P}(\{a\})=\mathrm{P}(\{b\})=\alpha \quad \mathrm{P}(\{c\})=\mathrm{P}(\{d\})=\beta \quad \mathrm{P}(\{e\})=1-2(\alpha+\beta)$.
Find all $\alpha, \beta$ for which $\mathcal{F}_{X}$ and $\mathcal{F}_{Y}$ are independent. Simplify!
d. (5) Find all $\alpha, \beta$ for which $X$ and $Z \equiv X+Y$ are independent.

Problem 2: For $n \in \mathbb{N}$ let $Z_{n} \sim \operatorname{Ex}(1)$ be independent random variables, all with the exponential distribution with density function

$$
f(z)=e^{-z} 1_{\mathbb{R}_{+}}(z)
$$

a. (4) True or false? Circle one and prove your answer.

$$
\limsup _{n \rightarrow \infty} Z_{n}=\infty
$$

b. (4) True or false? Circle one and prove your answer.

$$
\liminf _{n \rightarrow \infty} Z_{n}=-\infty
$$

c. (4) True or false? Circle one and prove your answer.

T F

$$
\mathrm{P}\left[Z_{n}>n \text { infinitely often }\right]=1
$$

d. (4) Evaluate the indicated limit:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left[\min _{1 \leq k \leq n} Z_{k} \geq \frac{1}{n}\right]=
$$

$\qquad$
e. (4) Is the event $\left[\min _{1 \leq k \leq n} Z_{k} \geq \frac{1}{n}\right]$ from d. above in the tail $\sigma$-field $\mathcal{T}=\cap_{n} \sigma\left\{Z_{m}: m \geq n\right\}$ ? Why or why not?

Y N

## Problem 3:

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables, all defined on the same probability space $(\Omega, \mathcal{F}, \mathrm{P})$. The event that the infimum (greatest lower bound) is at least $\alpha \in \mathbb{R}$ can be expressed $\cap_{n=1}^{\infty}\left[X_{n} \geq \alpha\right]$.
a. (8) Write the event that the supremum of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is less than or equal to $\beta \in \mathbb{R}$, using intersections, unions, etc. to combine events of the form $\left[X_{n} \leq x\right]$, $\left[X_{n} \geq y\right]$, etc.:

$$
\left[\sup _{n<\infty} X_{n} \leq \beta\right]=
$$

$\qquad$
b. (8) Write the event that only finitely-many $X_{n}$ 's exceed $\beta$ (Hint: Think about $\left\{X_{n}: n \geq m\right\}$ for $m \in \mathbb{N}$ ):
$\left[\limsup _{n \rightarrow \infty} X_{n} \leq \beta\right]=$
c. (4) Why does this show that the $\lim -\sup X=\lim \sup _{n \rightarrow \infty} X_{n}$ of any sequence of $\mathcal{G}$-measureable random variables is a $\mathcal{G}$-measureable random variable, for any $\sigma$-field $\mathcal{G} \subset \mathcal{F}$ ?

Problem 4: Let $X=\omega(2-\omega)$ be a random variable on the space $\Omega=(0,2]$ with $\mathcal{F}=\mathcal{B}(\Omega)$, the Botel sets (it's plotted below).
a. (10) Find and plot a non-negative simple random variable $Y \in$ $\mathcal{E}_{+}$satisfying $Y(\omega) \leq X(\omega)$ and $Y(\omega) \geq X(\omega)-0.5$ for all $\omega \in \Omega$.

$Y(\omega)=$
b. (6) For $c>0$ define an additive set function P on $\mathcal{F}$ by

$$
\mathrm{P}\{(a, b]\}=c^{-1} \int_{a}^{b} 2 \omega d \omega=\left(b^{2}-a^{2}\right) / c
$$

for $(a, b] \subset \Omega$. For which $c$ is P a probability measure on $(\Omega, \mathcal{F})$ ? Find $\mathrm{E} X$ and $\mathrm{E} Y$ for this probability measure.

$$
c=\ldots \mathrm{E} X=\ldots
$$

c. (4) Let $Z=1_{(0,1]}$. Are $X$ and $Z$ independent on $(\Omega, \mathcal{F}, P)$ ? Why?Yes $\square$ No

Problem 5: Let $(\Omega, \mathcal{F}, \mathrm{P})$ be the natural numbers $\Omega=\mathbb{N}=\{1,2,3, \ldots\}$ with $\mathcal{F}=2^{\Omega}$ and $\mathrm{P}[A]=\sum\left\{2^{-\omega}: \omega \in A \cap \mathbb{N}\right\}$.
a. (5) Is the random variable $X(\omega)=\omega$ in $L^{1}(\Omega, \mathcal{F}, \mathrm{P})$ ? If so, find $\mathrm{E}[X]$; if not, tell why. $\bigcirc$ Yes $\bigcirc$ No Reasoning:
b. (5) For $n \in \mathbb{N}$ define a random variable $Y_{n}$ by $Y_{n}(\omega)=0$ if $\omega<n$, $Y_{n}(\omega)=2^{n}$ if $\omega \geq n$. Does the Monotone Convergence Theorem apply to $\left\{Y_{n}\right\}$ ? If so, tell what MCT says; if not, explain.
$\bigcirc$ Yes $\bigcirc$ No Reasoning:
c. (5) Define $Y_{n}$ as above. Does Fatou's Lemma apply? If so, verify Fatou's conclusion by calculation; if not, why? $\bigcirc$ Yes $\bigcirc$ No Reasoning:
d. (5) If possible, construct independent random variables $Z_{1}, Z_{2}$ on $(\Omega, \mathcal{F}, \mathrm{P})$, with (non-trivial) Bernoulli $\mathrm{Bi}\left(1, p_{j}\right)$ distributions, i.e., with $\mathrm{P}\left[Z_{j}=1\right]=p_{j}=1-\mathrm{P}\left[Z_{j}=0\right]$, for some $p_{1}, p_{2} \in(0,1)$. Is it possible to have $p_{1}=p_{2}=1 / 2 ? \bigcirc$ Yes $\bigcirc$ No Explain.

Name:

## Blank Worksheet

## Another Blank Worksheet

