Final Examination

STA 205: Probability and Measure Theory
Due by Friday, 2006 May 5, 7:00 pm

This is an open-book take-home examination. You may work on it during any consecutive 24 -hour period you like; please record your starting and ending times on the lines below.

You must do your own work- no collaboration is permitted. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss exam questions with others (whether or not they are taking this exam). You can reach me by telephone (w: 684-3275; h: 688-0435) or, better, by e-mail (wolpert@stat.duke.edu).

You must show your work to get partial credit. Unsupported answers are not acceptable, even if they are correct. It is to your advantage to write your solutions as clearly as possible, since I cannot give credit for solutions I do not understand. Good luck.

This exam is due by 7 pm Friday, 2006 May 5 . You may slip it under my office door (211c Old Chem) or hand it to me earlier.

Problem 1: Let $\xi_{j} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ be standard (unit-mean) exponentiallydistributed random variables; set

$$
X_{n} \equiv \max _{j \leq n} \xi_{j}
$$

a) Find the distribution function for X_{n}, correct for all $x \in \mathbb{R}$: $F_{n}(x)=\{$
b) Find a sequence $a_{n} \rightarrow \infty$ of (non-random) real numbers for which $\left(X_{n}-a_{n}\right)$ has a non-trivial limiting distribution, and find the distribution function for the limit, correctly for all $z \in \mathbb{R}$:
$\left(X_{n}-a_{n}\right) \Rightarrow Z, a_{n}=$ \qquad _,
$F_{Z}(z) \equiv \mathrm{P}[Z \leq z]=$

Problem 1 (cont'd): Recall that $\xi_{j} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$, and set

$$
Y_{n} \equiv \min _{j \leq n} \xi_{j}
$$

c) Find the distribution function for Y_{n}, correct for all $y \in \mathbb{R}$: $F_{n}(y)=\{$
d) Find a sequence $b_{n} \rightarrow \infty$ of positive real numbers for which $b_{n} \cdot Y_{n}$ has a non-trivial limiting distribution, and find the distribution function for the limit (correctly for all $z \in \mathbb{R}$):
$b_{n} \cdot Y_{n} \Rightarrow Z, b_{n}=$ \qquad ,
$F_{Z}(z) \equiv \mathrm{P}[Z \leq z]=$

Problem 2: \quad Fix $p \in \mathbb{N}$ and let $\Omega \equiv\{1, \cdots, p\}$, with power set $\mathcal{F} \equiv 2^{\Omega}$, and let $\mathrm{P}(A) \equiv|A| / p$ for $A \in \mathcal{F}$ be the uniform probability measure on Ω.
a) If p is prime, and if $A, B \in \mathcal{F}$ are independent (i.e., $A \Perp B$), show that either A or B is Ω or \emptyset.
b) Find the joint characteristic function

$$
\phi\left(t_{1}, t_{2}\right)=\mathrm{E}\left[e^{i t_{1} X_{1}+i t_{2} X_{2}}\right]
$$

for the indicator random variables $X_{i}(\omega) \equiv 1_{i}(\omega)$. Use it to confirm that X_{1} and X_{2} are not independent.

Problem 2 (cont'd): Recall that $\Omega \equiv\{1, \cdots, p\}, \mathcal{F} \equiv 2^{\Omega}$, and $\mathrm{P}(A) \equiv$ $|A| / p$ for $A \in \mathcal{F}$. Now fix any $n \in \mathbb{N}$ and let $\Omega^{n}=\left\{\vec{\omega}=\left(\omega_{1}, \cdots, \omega_{n}\right)\right\}$ be the Cartesian product, with product σ-field \mathcal{F}^{n} and product measure $\mathrm{P}^{n}=\mathrm{P} \otimes \mathrm{P} \otimes \cdots \otimes \mathrm{P}$, describing n independent uniform draws from Ω. For $1 \leq i \leq j \leq n$ consider the $\binom{n}{2}$ events

$$
A_{i j} \equiv\left\{\vec{\omega} \in \Omega^{n}: \omega_{i}=\omega_{j}\right\}
$$

c) Find $\mathrm{P}\left[A_{i j}\right]$ correctly for each of the pairs $1 \leq i \leq j \leq n$.
d) Are the $\binom{n}{2}$ events $\left\{A_{i j}\right\}$ pairwise-independent? Prove it.
e) Are the $\binom{n}{2}$ events $\left\{A_{i j}\right\}$ independent? Prove it.

Problem 3: Let $X, Y \underset{\sim}{\sim} \mathrm{id} \operatorname{Ex}(\lambda)$ be independent random variables, each with the exponential distribution with mean $1 / \lambda$. Find:
a) The probability:
$\mathrm{P}[X \geq 2 Y]=$ \qquad
b) The p.d.f. for $Z \equiv Y / X$, correctly for all $z \in \mathbb{R}$:
$f_{Z}(z)=$ \qquad

Problem 3 (cont'd): Recall $X, Y \stackrel{\text { iid }}{\sim} \mathrm{Ex}(\lambda)$ and $Z \equiv Y / X$. Find:
c) The indicated expectation:
\qquad
d) Show that the characteristic function $\phi(t) \equiv \mathrm{E}\left[e^{i t \log (Z)}\right]$ for $\log (Z)$ is an even real-valued function, i.e., satisfies $\phi(-t)=\phi(t)=\overline{\phi(t)}$ (XC: Find $\phi(t)$ explicitly):

Problem 4: Let $\left\{X_{n}>0\right\}$ and $X>0$ be positive random variables with $X_{n} \rightarrow X$ a.s. Choose True or False below, and sketch a proof (e.g., cite a relevant theorem) or give a counter-example to show that you're right.
a) $\mathrm{T} \mathrm{F} \log \left(X_{n}\right) \rightarrow \log (X)$ in probability.
b) T F $\quad X_{n} \rightarrow X$ in L_{2} if each $\mathrm{E}\left[\left|X_{n}\right|^{3}\right] \leq \pi$.
c) T F $\quad \log \left(X_{n}\right) \rightarrow \log (X)$ in L_{1} if each $\mathrm{E}\left[\left|X_{n}\right|^{3}\right] \leq \pi$.

Problem 4 (cont'd): Recall $\left\{X_{n}>0\right\}, X>0$, and $X_{n} \rightarrow X$ a.s.
d) T F $\limsup \sin _{n \rightarrow \infty} \mathrm{E}\left[\log \left(1+X_{n}\right)\right] \geq \mathrm{E}[\log (1+X)]$
e) T F $X \in L_{2}$ if $\mathrm{E}[\exp (t \cdot X)]<\infty$ for some $t>0$.
f) T F $X \in L_{2}$ if $\mathrm{E}[\exp (t \cdot X)]<\infty$ for some $t<0$.

Problem 5: \quad Let $(\Omega, \mathcal{F}, P)=\left((0,1], \mathcal{B}_{1}, \lambda\right)$ be the unit interval with Lebesgue measure $\lambda(d \omega)=d \omega$ (length). Define three random variables by

$$
X(\omega) \equiv 1_{(0, .5]}(\omega) \quad Y(\omega) \equiv 1_{(.3,0.7]}(\omega) \quad Z(\omega) \equiv \omega(1-\omega)
$$

a) For each pair of σ-algebras below, indicate with a symbol on the line whether there is inclusion (\subset or \supset), equality $(=)$, independence (\Perp), or none of these (X) :

$$
\begin{array}{rll}
\sigma(X) & - & \sigma(Y) \\
\sigma(X) & - & \sigma(Z) \\
\sigma(Y) & - & \sigma(Z) \\
\sigma(X, Y) & - & \sigma(Z) \\
\sigma(X, Z) & - & \mathcal{F}
\end{array}
$$

b) Find and plot the conditional expectation $\mathrm{E}[Z \mid X, Y]$:

Problem 5 (cont'd): Recall $(\Omega, \mathcal{F}, \mathcal{P})=\left((0,1], \mathcal{B}_{1}, \lambda\right)$ and

$$
X(\omega) \equiv 1_{(0, .5]}(\omega) \quad Y(\omega) \equiv 1_{(.3,0.7]}(\omega) \quad Z(\omega) \equiv \omega(1-\omega)
$$

Define a new random variable by $W(\omega) \equiv 1_{(0.2,0.6]}(\omega)$
c) Find and plot the conditional expectation $\mathrm{E}[W \mid Y]$:

d) Find and plot the conditional expectation $\mathrm{E}[W \mid Z]$:

Problem 6: Let $\xi_{j} \sim \operatorname{Un}(0,2)$ be independent random variables with the uniform distribution on the interval $(0,2)$, and set $X_{n} \equiv \prod_{j=1}^{n} \xi_{j}$.
a) Find the mean and variance of X_{n} :

$$
\mathrm{E}\left[X_{n}\right]=\square
$$

b) For each $p>0$, can you find a number $a_{p}>0$ such that

$$
M_{p}(n) \equiv\left(a_{p}\right)^{n} \cdot\left(X_{n}\right)^{p}
$$

is a martingale?
c) Bound as tightly as you can

$$
\mathrm{P}\left[X_{16}>0.010\right] \leq
$$

d) Bound as tightly as you can

$$
\mathrm{P}\left[\sup _{0 \leq n \leq 16} X_{n}>2.0\right] \leq
$$

\qquad
e) (XC) For $r, \lambda>0$ find bounds for $\mathrm{P}\left[\sup _{n<\infty} r^{n} X_{n}>\lambda\right]$

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\mathrm{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	Ex(λ)	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	1/入	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	HG(n, A, B)		$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\operatorname{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(1-e^{\sigma^{2}}\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \beta)$	$f(x)=\beta \alpha^{\beta} / x^{\beta+1}$	$x \in(\alpha, \infty)$	$\frac{\alpha \beta}{\beta-1}$	$\frac{\alpha^{2} \beta}{(\beta-1)^{2}(\beta-2)}$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} f(x) & =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)_{1} / 2}{\Gamma\left(\frac{\nu_{1}^{2}}{2}\right) \Gamma\left(\frac{\nu_{2}^{2}}{2}\right)} \times \\ & x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{(\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	We ($\alpha, \beta, \gamma)$	$f(x)=\frac{\alpha(x-\gamma)^{\alpha-1}}{\beta^{\alpha}} e^{-[(x-\gamma) / \beta]^{\alpha}}$	$x \in(\gamma, \infty)$	$\gamma+\beta \Gamma(1$	$\left.\alpha^{-1}\right)$

