Midterm Examination

STA 205: Probability and Measure Theory

Wednesday, 2006 Mar 8, 2:50-4:05 pm

This is a closed-book examination. You may use a single one-sided sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing *please* ask me— don't guess, and don't discuss exam questions with others.

Unless a problem states otherwise, you must **show** your **work** to get partial credit. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, since I cannot give credit for solutions I do not understand. Good luck.

	1.	/20
	2.	/20
	3.	/20
Print Name:	4.	/20
	5.	/20
	Total:	/100

Problem 1. For $n \in \mathbb{N}$ let $Z_n \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1)$ be independent random variables, all with the exponential distribution with density function

$$f(z) = e^{-z} 1_{\mathbb{R}_+}(z).$$

Give short answers below, with a brief justification:

- a. (4) Is $\{Z_n\}$ uniformly integrable (U.I.)? \bigcirc Yes \bigcirc No Why?
- b. (4) $\mathsf{P}[\{Z_n > \log(n)\}\)$ for infinitely-many n] = Why?
- c. (4) $\mathsf{P}[\{Z_n > 2\log(n)\}\)$ for infinitely-many n] = Why?
- d. (4) Set $X_n \equiv \{ \min_{1 \le k \le n} Z_k \}$; find $\lim_{n \to \infty} \mathsf{P}[X_n > 2/n] =$ Why?
- e. (4) Set $Y_n \equiv \{\max_{1 \le k \le n} Z_k\}$; find $\lim_{n \to \infty} \mathsf{P}[Y_n \le \log(n)] = Why?$

Spring 2006

Problem 2. Let $C = \{C_j\}$ be the collection of subsets $C_j \equiv (0, j/4]$ of $\Omega = (0, 1]$, for j = 0, 1, 2, 3, 4.

- a. (5) Describe in detail the smallest π -system $\pi(\mathcal{C})$ containing \mathcal{C} . How many elements does $\pi(\mathcal{C})$ include? Describe them, don't list them. $\#(\pi(\mathcal{C})) =$ $\pi(\mathcal{C}) =$
- b. (5) Describe in detail the smallest λ -system $\lambda(\mathcal{C})$ containing \mathcal{C} . How many elements does $\lambda(\mathcal{C})$ include? Describe them, don't list them. $\#(\lambda(\mathcal{C})) =$ $\lambda(\mathcal{C}) =$
- c. (5) Is C a partition? If so, explain why; if not, describe in detail the partition \mathcal{P} it determines. How many elements does \mathcal{P} include? $\#(\mathcal{P}) =$ $\mathcal{P} =$
- d. (5) For $\mathsf{P}(d\omega) = d\omega$ (Lebesgue measure), give a non-trivial (*i.e.*, not a.s. constant) random variable X for which $\sigma(\mathcal{C}) \perp \sigma(X)$.

$$X(\omega) = \begin{cases} \\ \\ \end{cases}$$

Spring 2006

Mar 8, 2006

Problem 3. Let $\Omega = \mathbb{R}_+$ with the Borel sets \mathcal{F} and, for some fixed $\lambda > 0$, define a probability measure on (Ω, \mathcal{F}) by $\mathsf{P}(d\omega) \equiv \lambda e^{-\lambda \omega} d\omega$, *i.e.*,

$$\mathsf{P}\big\{(a,\ b]\big\}=e^{-\lambda a}-e^{-\lambda b},\qquad (a,\ b]\subset \mathbb{R}_+.$$

For $n \in \{0, 1, 2, ...\}$ define random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ by

$$X_n(\omega) \equiv \omega^n/n!$$
 $S_n(\omega) \equiv \sum_{k=0}^n X_k(\omega)$

a. (5) For which (if any) $\lambda > 0$ does the **monotone convergence theorem** apply to the sequence $\{S_n\}$? What does the M.C.T. say?

b. (5) For which (if any) $\lambda > 0$ does the **dominated convergence theorem** apply to the sequence $\{S_n\}$? What L_1 R.V. Y dominates? What does D.C.T. say?

Problem 3 (cont).

Recall $\mathsf{P}(d\omega) = \lambda e^{-\lambda\omega} d\omega$, $X_n(\omega) \equiv \frac{\omega^n}{n!}$, and $S_n(\omega) \equiv \sum_{k=0}^n X_k(\omega)$ on \mathbb{R}_+ .

c. (5) For which (if any) $\lambda > 0$ is the random variable X_1 independent of the random variable $Z(\omega) \equiv 1_{(0,1]}(\omega)$?

d. (5) Find the indicated expectations and limits. You may find it useful to recall that $\int_0^\infty x^n e^{-x} dx = \Gamma(n+1) = n!$ for $n \in \mathbb{N}$.

$E[X_n] = _$	\rightarrow	$\lim_{n \to \infty} E[X_n] = _$
$E[S_n] = _$	\rightarrow	$\lim_{n \to \infty} E[S_n] = _$

Problem 4. For 2pt each, write your answers in the boxes provided, or circle True or False. No explanations are required. In parts b) and c), g = g(x) denotes a completely arbitrary Borel measureable function.

a) If
$$X \in L_1$$
 then $X \in L_2$. T F

b) If X is simple¹ and
$$Y = g(X)$$
 then Y is simple. T F

c) If X is continuous² and
$$Y = g(X)$$
 then Y is continuous. T F

d) If
$$|X_n| \leq Y$$
 and $Y \in L_1$ then $\{X_n\}$ is U.I. T F

e) If $X \in L_2$ and $Y \in L_2$ then for what (if any) p is $X \cdot Y \in L_p$?

f) If
$$X \in L_1$$
 then $\mathsf{E}[\exp(X)] \le \exp(\mathsf{E}[X])$. $\mathsf{T} \mathsf{F}$

g) If
$$X \in L_1$$
 and $Y_n \equiv \mathbb{1}_{\{|X| > n\}}$ then $\mathsf{E}[X Y_n] \to 0$ as $n \to \infty$. T F

h) If
$$\mathsf{E}[e^X] = 10$$
, give an upper bound for $\mathsf{P}[X > 5]$:

i) If $\mathsf{E}[e^{|X|}] < \infty$ then $X \in L_2$. T F

j) If $X \perp \!\!\!\perp Y$ and $Y \perp \!\!\!\perp Z$ then $X \perp \!\!\!\perp Z$. T F

¹A simple R.V. is one that takes on only finitely-many different values.

²This is a sloppy but common way of saying that the random variable has a continuous distribution, *i.e.*, that its C.D.F. F(x) is a continuous function of $x \in \mathbb{R}$.

Problem 5. The Characteristic Function ("ch.f.") of any random variable Z is defined by the expectation

$$\phi_Z(s) \equiv \mathsf{E}\left[e^{isZ}\right] \qquad s \in \mathbb{R},$$

a complex-valued function of the real-valued argument s.

- a. (4) If X is any random variable with ch.f. φ_X(s), and if Y = a+bX for real numbers a and b, express the ch.f. φ_Y(s) of Y in terms of φ_X(s):
 φ_Y(s) =
- b. (6) Let $\xi \sim \text{Un}([-\pi,\pi))$ be uniformly distributed on the indicated interval. Find the ch.f. for ξ and for the random variable $X \equiv 0 \lor \xi$, the maximum of zero and ξ . Simplify!

$$\phi_{\xi}(s) = \underline{\qquad} \qquad \phi_X(s) = \underline{\qquad}$$

Problem 5 (cont).

The ch.f. of any random variable Z is still defined by

$$\phi_Z(s) \equiv \mathsf{E}\left[e^{isZ}\right] \qquad s \in \mathbb{R}.$$

c. (5) On the probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\Omega = (0, \pi]$ with the Borel sets \mathcal{F} and probability measure $\mathsf{P}(d\omega) = \frac{1}{2}\sin(\omega) d\omega$ proportional to the sine³ function, find the ch.f. of the random variable $Y(\omega) = \omega$. $\phi_Y(s) =$

d. (5) Describe all probability distributions whose ch.f. satisfies $\phi(\pi) = 1$.

Spring 2006

³Hint: Since $\exp(i\omega) = \cos(\omega) + i\sin(\omega)$, then $\sin(\omega) = [e^{-i\omega} - e^{i\omega}](i/2)$.

Blank Worksheet

Name: ____

Another Blank Worksheet

Name	Notation	$\mathbf{pdf}/\mathbf{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$)
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		(A) (D)	$y \in \{1, \ldots\}$			(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$\left(P = \frac{A}{A+B}\right)$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} \left(1-e^{-\frac{2}{3}}\right)$	σ^2)
Neg. Binom.	$NB(\alpha,p)$	$f(x) = {\binom{x+\alpha-1}{x}}p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$lpha q/p^2$	(q = 1 - p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\beta)$	$f(x) = \beta \alpha^\beta / x^{\beta+1}$	$x\in (\alpha,\infty)$	$\frac{\alpha\beta}{\beta-1}$	$\tfrac{\alpha^2\beta}{(\beta-1)^2(\beta-2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_2)}{\nu_1}$	$\frac{1+\nu_2-2)}{(\nu_2-4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	$\nu/(\nu-2)$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta,\gamma)$	$f(x) = \frac{\alpha(x-\gamma)^{\alpha-1}}{\beta^{\alpha}} e^{-[(x-\gamma)/\beta]^{\alpha}}$	$x\in (\gamma,\infty)$	$\gamma + \beta \Gamma(1$	$+ \alpha^{-1}$)	