Midterm Examination

STA 205: Probability and Measure Theory

Wednesday, 2006 Mar 8, 2:50-4:05 pm

This is a closed-book examination. You may use a single one-sided sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss exam questions with others.

Unless a problem states otherwise, you must show your work to get partial credit. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible, since I cannot give credit for solutions I do not understand. Good luck.

Print Name: $工$| 1. | $/ 20$ |
| :---: | :---: |
| 2. | $/ 20$ |
| 3. | $/ 20$ |
| 4. | $/ 20$ |
| 5. | $/ 20$ |
| Total: | $/ 100$ |

Problem 1. For $n \in \mathbb{N}$ let $Z_{n} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(1)$ be independent random variables, all with the exponential distribution with density function

$$
f(z)=e^{-z} 1_{\mathbb{R}_{+}}(z)
$$

Give short answers below, with a brief justification:
a. (4) Is $\left\{Z_{n}\right\}$ uniformly integrable (U.I.)?Yes
\bigcirc No Why?
b. (4) $\mathrm{P}\left[\left\{Z_{n}>\log (n)\right\}\right.$ for infinitely-many $\left.n\right]=$ Why?
c. (4) $\mathrm{P}\left[\left\{Z_{n}>2 \log (n)\right\}\right.$ for infinitely-many $\left.n\right]=$ Why?
d. (4) Set $X_{n} \equiv\left\{\min _{1 \leq k \leq n} Z_{k}\right\}$; find $\lim _{n \rightarrow \infty} \mathrm{P}\left[X_{n}>2 / n\right]=$
 Why?
e. (4) Set $Y_{n} \equiv\left\{\max _{1 \leq k \leq n} Z_{k}\right\}$; find $\lim _{n \rightarrow \infty} \mathrm{P}\left[Y_{n} \leq \log (n)\right]=$ Why?

Problem 2. Let $\mathcal{C}=\left\{C_{j}\right\}$ be the collection of subsets $C_{j} \equiv(0, j / 4]$ of $\Omega=(0,1]$, for $j=0,1,2,3,4$.
a. (5) Describe in detail the smallest π-system $\pi(\mathcal{C})$ containing \mathcal{C}. How many elements does $\pi(\mathcal{C})$ include? Describe them, don't list them.
$\#(\pi(\mathcal{C}))=\square \quad \pi(\mathcal{C})=$
b. (5) Describe in detail the smallest λ-system $\lambda(\mathcal{C})$ containing \mathcal{C}. How many elements does $\lambda(\mathcal{C})$ include? Describe them, don't list them. $\#(\lambda(\mathcal{C}))=\square \quad \lambda(\mathcal{C})=$
c. (5) Is \mathcal{C} a partition? If so, explain why; if not, describe in detail the partition \mathcal{P} it determines. How many elements does \mathcal{P} include? $\#(\mathcal{P})=\square \quad \mathcal{P}=$
d. (5) For $\mathrm{P}(d \omega)=d \omega$ (Lebesgue measure), give a non-trivial (i.e., not a.s. constant) random variable X for which $\sigma(\mathcal{C}) \Perp \sigma(X)$.

$$
X(\omega)=\{
$$

Problem 3. Let $\Omega=\mathbb{R}_{+}$with the Borel sets \mathcal{F} and, for some fixed $\lambda>0$, define a probability measure on (Ω, \mathcal{F}) by $\mathrm{P}(d \omega) \equiv \lambda e^{-\lambda \omega} d \omega$, i.e.,

$$
\mathrm{P}\{(a, b]\}=e^{-\lambda a}-e^{-\lambda b}, \quad(a, b] \subset \mathbb{R}_{+}
$$

For $n \in\{0,1,2, \ldots\}$ define random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ by

$$
X_{n}(\omega) \equiv \omega^{n} / n!\quad S_{n}(\omega) \equiv \sum_{k=0}^{n} X_{k}(\omega)
$$

a. (5) For which (if any) $\lambda>0$ does the monotone convergence theorem apply to the sequence $\left\{S_{n}\right\}$? What does the M.C.T. say?
b. (5) For which (if any) $\lambda>0$ does the dominated convergence theorem apply to the sequence $\left\{S_{n}\right\}$? What L_{1} R.V. Y dominates? What does D.C.T. say?

Problem 3 (cont).
Recall $\mathrm{P}(d \omega)=\lambda e^{-\lambda \omega} d \omega, X_{n}(\omega) \equiv \frac{\omega^{n}}{n!}$, and $S_{n}(\omega) \equiv \sum_{k=0}^{n} X_{k}(\omega)$ on \mathbb{R}_{+}.
c. (5) For which (if any) $\lambda>0$ is the random variable X_{1} independent of the random variable $Z(\omega) \equiv 1_{(0,1]}(\omega)$?
d. (5) Find the indicated expectations and limits. You may find it useful to recall that $\int_{0}^{\infty} x^{n} e^{-x} d x=\Gamma(n+1)=n$! for $n \in \mathbb{N}$.

$$
\begin{array}{lll}
\mathrm{E}\left[X_{n}\right]= & \rightarrow & \lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]= \\
\mathrm{E}\left[S_{n}\right]= \\
\hline
\end{array} \quad \rightarrow \quad \lim _{n \rightarrow \infty} \mathrm{E}\left[S_{n}\right]=
$$

Problem 4. For 2 pt each, write your answers in the boxes provided, or circle True or False. No explanations are required. In parts b) and c), $g=g(x)$ denotes a completely arbitrary Borel measureable function.
a) If $X \in L_{1}$ then $X \in L_{2}$ T F
b) If X is simple ${ }^{1}$ and $Y=g(X)$ then Y is simple.

T F
c) If X is continuous ${ }^{2}$ and $Y=g(X)$ then Y is continuous.

T F
d) If $\left|X_{n}\right| \leq Y$ and $Y \in L_{1}$ then $\left\{X_{n}\right\}$ is U.I.

T F
e) If $X \in L_{2}$ and $Y \in L_{2}$ then for what (if any) p is $X \cdot Y \in L_{p}$? \square
f) If $X \in L_{1}$ then $\mathrm{E}[\exp (X)] \leq \exp (\mathrm{E}[X])$.

T F
g) If $X \in L_{1}$ and $Y_{n} \equiv 1_{\{|X|>n\}}$ then $\mathrm{E}\left[X Y_{n}\right] \rightarrow 0$ as $n \rightarrow \infty$.

T F
h) If $\mathrm{E}\left[e^{X}\right]=10$, give an upper bound for $\mathrm{P}[X>5]$:
i) If $\mathrm{E}\left[e^{|X|}\right]<\infty$ then $X \in L_{2}$. T F
j) If $X \Perp Y$ and $Y \Perp Z$ then $X \Perp Z$.

[^0]Problem 5. The Characteristic Function ("ch.f.") of any random variable Z is defined by the expectation

$$
\phi_{Z}(s) \equiv \mathbb{E}\left[e^{i s Z}\right] \quad s \in \mathbb{R},
$$

a complex-valued function of the real-valued argument s.
a. (4) If X is any random variable with ch.f. $\phi_{X}(s)$, and if $Y=a+b X$ for real numbers a and b, express the ch.f. $\phi_{Y}(s)$ of Y in terms of $\phi_{X}(s)$: $\phi_{Y}(s)=$
b. (6) Let $\xi \sim \operatorname{Un}([-\pi, \pi))$ be uniformly distributed on the indicated interval. Find the ch.f. for ξ and for the random variable $X \equiv 0 \vee \xi$, the maximum of zero and ξ. Simplify!

$$
\phi_{\xi}(s)=
$$

$$
\phi_{X}(s)=
$$

\qquad

Problem 5 (cont).
The ch.f. of any random variable Z is still defined by

$$
\phi_{Z}(s) \equiv \mathrm{E}\left[e^{i s Z}\right] \quad s \in \mathbb{R}
$$

c. (5) On the probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=(0, \pi]$ with the Borel sets \mathcal{F} and probability measure $\mathrm{P}(d \omega)=\frac{1}{2} \sin (\omega) d \omega$ proportional to the sine ${ }^{3}$ function, find the ch.f. of the random variable $Y(\omega)=\omega$. $\phi_{Y}(s)=$
d. (5) Describe all probability distributions whose ch.f. satisfies $\phi(\pi)=1$.

[^1]Name:
STA 205: Prob \& Meas Theory

Blank Worksheet

Name:
STA 205: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\mathrm{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	HG(n, A, B)	$f(x)=\frac{\binom{A}{x}\binom{B}{n}}{\binom{A-x}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	Lo (μ, β)	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(1-e^{\sigma^{2}}\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \beta)$	$f(x)=\beta \alpha^{\beta} / x^{\beta+1}$	$x \in(\alpha, \infty)$	$\frac{\alpha \beta}{\beta-1}$	$\frac{\alpha^{2} \beta}{(\beta-1)^{2}(\beta-2)}$
Poisson	$\operatorname{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	We (α, β, γ)	$f(x)=\frac{\alpha(x-\gamma)^{\alpha-1}}{\beta^{\alpha}} e^{-[(x-\gamma) / \beta]^{\alpha}}$	$x \in(\gamma, \infty)$	$\gamma+\beta \Gamma(1$	$\left.\alpha^{-1}\right)$

[^0]: ${ }^{1}$ A simple R.V. is one that takes on only finitely-many different values.
 ${ }^{2}$ This is a sloppy but common way of saying that the random variable has a continuous distribution, i.e., that its C.D.F. $F(x)$ is a continuous function of $x \in \mathbb{R}$.

[^1]: ${ }^{3}$ Hint: Since $\exp (i \omega)=\cos (\omega)+i \sin (\omega)$, then $\sin (\omega)=\left[e^{-i \omega}-e^{i \omega}\right](i / 2)$.

