Final Examination

STA 205: Probability and Measure Theory
Due by Wednesday, 2008 April 30, 2:00 pm

This is an open-book take-home examination.
You must do your own work- no collaboration is permitted. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss exam questions with others (whether or not they are taking this exam). You can reach me by e-mail (wolpert@stat.duke.edu) or telephone (919-684-3275).

You must show your work to get credit. Unsupported answers are not acceptable, even if they are correct. It is to your advantage to write your solutions as clearly as possible.

This exam is due on or before 2:00 pm Wednesday, 2008 April 30. You may slip it under my office door (211c Old Chem) or hand it to me earlier.

Problem 1: Let $\Omega=\mathbb{R}_{+}=[0, \infty)$ be the positive half-line, with Borel sets $\mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right)$and probability measure P given by $\mathrm{P}(d \omega)=e^{-\omega} d \omega$ or (equivalently)

$$
\mathrm{P}[(a, b]]=e^{-a}-e^{-b} \quad 0<a<b<\infty
$$

For each integer $n \in \mathbb{N}=\{1,2, \cdots\}$ define a random variable on (Ω, \mathcal{F}) by

$$
X_{n}(\omega):= \begin{cases}0 & \text { if } \omega<n \\ 1 & \text { if } \omega \geq n\end{cases}
$$

a) Find the mean $m_{n}=\mathrm{E}\left[X_{n}\right]$ for each $n \in \mathbb{N}$ and the covariance $\Sigma_{m n}=$ $\mathrm{E}\left[\left(X_{m}-m_{m}\right)\left(X_{n}-m_{n}\right)\right]$ for each $m \leq n \in \mathbb{N}$:

$$
m_{n}=
$$

$$
\Sigma_{m n}=
$$

b) Give the probability distribution measure μ_{n} of X_{n} for each n :

Problem 1 (cont'd): As before, $\Omega=\mathbb{R}_{+}, \mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right), \mathrm{P}(d \omega)=e^{-\omega} d \omega$, and $X_{n}(\omega):=1_{[n, \infty)}(\omega)$ for $n \in \mathbb{N}\left(\right.$ see footnote $\left.{ }^{1}\right)$
c) Give the σ-algebras $\sigma\left(X_{n}\right)$ explicitly for each fixed $n \in \mathbb{N}$:

d) Does the σ-algebra $\mathcal{G}=\sigma\left(X_{1}, X_{2}, \ldots\right)$ generated by all the X_{n} 's contain all the Borel sets in \mathbb{R}_{+}? If so, say why; if not, find a Borel set $B \in \mathcal{F}$ that is not in \mathcal{G}.
e) Are X_{1} and X_{2} independent? Justify your answer.

[^0]Problem 2: As in Problem 1, $\Omega=\mathbb{R}_{+}, \mathcal{F}=\mathcal{B}\left(\mathbb{R}_{+}\right), \mathrm{P}(d \omega)=e^{-\omega} d \omega$, and $X_{n}(\omega):=\mathbf{1}_{[n, \infty)}(\omega)$ for $n \in \mathbb{N}$.
a) Prove that the sum $S:=\sum_{k=1}^{\infty} X_{k}$ converges almost surely. Give the name and the mean of the probability distribution of S.
b) Do the partial sums $S_{n}:=X_{1}+\cdots+X_{n}$ converge to S in L_{1} as $n \rightarrow \infty$? Justify your answer.
c) Set $\mathcal{F}_{n}=\sigma\left\{X_{1}, \cdots, X_{n}\right\}$, the σ-algebra generated by the first n of the X_{k} 's. Find the indicated conditional expectations:

$$
\mathrm{E}\left[X_{4} \mid \mathcal{F}_{2}\right]=
$$

$$
\mathrm{E}\left[S \mid \mathcal{F}_{2}\right]=
$$

Problem 3: \quad Let $(\Omega, \mathcal{F}, \mathcal{P})=((0,1], \mathcal{B}, d \omega)$ be the unit interval with Lebesgue measure (length). Define three random variables by $X(\omega):=\mathbf{1}_{(0,0.5]}(\omega)$, $Y(\omega):=\mathbf{1}_{(0.3,1]}(\omega)$, and $Z(\omega):=\omega$.
a) Find and plot the conditional expectation $\mathrm{E}[X \mid Y]$:

b) Find and plot the conditional expectation $\mathrm{E}[Z \mid X, Y]$:

c) Find and plot the conditional expectation $\mathrm{E}[W \mid X, Y, Z]$ for the random variable $W(\omega):=\omega^{2}$:

Problem 4: The random variables $\left\{X_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Un}(0,1)$ are independent with the Uniform distribution on $(0,1]$.
a) Find the indicated expectations:

$$
\begin{array}{lr}
\mathrm{E}\left[\sin \left(\pi X_{1}\right)\right]= & \mathrm{E}\left[\frac{1}{\sin \left(\pi X_{1}\right)}\right]= \\
\mathrm{E}\left[\frac{1}{\sqrt{X_{1}}}\right]= & \mathrm{E}\left[\frac{X_{1}}{X_{2}}\right]=
\end{array}
$$

b) Set $M_{n}:=\wedge_{k=1}^{n} X_{k}=\min \left\{X_{1}, \ldots, X_{n}\right\}$, the minimum of the first n random variables. Find a sequence $\left\{a_{n}\right\}$ of (nonrandom) real numbers and a non-degenerate probability distribution function G (i.e. one with $0<G(x)<$ 1 for at least one number $x \in \mathbb{R}$) such that

$$
\mathrm{P}\left[a_{n} M_{n} \leq x\right] \rightarrow G(x)
$$

as $n \rightarrow \infty$, for every $x \in \mathbb{R}$ where $G(x)$ is continuous.
c) For your sequence a_{n} above, explain how to evaluate

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\phi\left(a_{n} M_{n}\right)\right]
$$

for any continuous bounded function $\phi(x)$.

Problem 5: Short answer questions (no explanations needed) about a probability space $(\Omega, \mathcal{F}, \mathrm{P})$:
a) How many points must Ω have (at minimum) for there to exist n distinct ${ }^{2}$ independent events A_{j} that are "nontrivial" in the sense that $0<$ $\mathrm{P}\left[A_{j}\right]<1$ for $j=1 \ldots n$?
b) How many points must Ω have (at minimum) for there to exist n independent events A_{j} if we don't insist that they be nontrivial or distinct?
c) How many points must Ω have (at minimum) for there to exist n distinct events A_{j} if we don't insist that they be independent?
d) If $A_{n} \supset A_{n+1}$ is a decreasing sequence of events with $\mathrm{P}\left[\cap_{j=1}^{\infty} A_{j}\right]>0$, does $\mathrm{E}\left[Y \mid A_{n}\right]$ converge, as $n \rightarrow \infty$ for every $Y \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$?
e) If two events B and C are independent, and if A is independent of both $B \cap C$ and $B^{c} \cap C$, is it necessarily true that the three events $\{A, B, C\}$ are independent?

[^1]Problem 6: The support of the probability distribution $\mu(d x)$ of an $\mathbb{R}^{d_{-}}$ valued random vector X is the smallest closed set $S \subset \mathbb{R}^{d}$ for which $\mu(S)=$ $\mathrm{P}[X \in S]=1$.
a) Let X have a distribution with a continuous density function $f(x)$; show that $\mathrm{E}\left[\frac{1}{f(X)}\right]$ is the Lebesgue measure of the support set, $|S|=\int_{S} d x$ (which may be finite or infinite).
b) If independent random variables $\left\{X_{n}\right\} \stackrel{\text { iid }}{\sim} \operatorname{Ex}(\lambda)$ have a common exponential distribution with parameter λ (and density function $f(x \mid \lambda)=$ $\lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_{+}}(x)$), find (and justify) the limits:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{f\left(X_{k} \mid \lambda\right)}=$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{f\left(X_{k} \mid \lambda / 2\right)}=
$$

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}} 1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=\alpha \epsilon^{\alpha} / x^{\alpha+1}$	$x \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	$\operatorname{Un}(a, b)$	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	$\mathrm{We}(\alpha, \beta)$	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ Recall that the indicator random variable $\mathbf{1}_{A}(\omega)$ is one if $\omega \in A$, otherwise zero.

[^1]: ${ }^{2}$ Two events A, B are distinct if $\emptyset \neq(A \Delta B):=(A \backslash B) \cup(B \backslash A)$.

