Midterm Examination

STA 205: Probability and Measure Theory
Wednesday, 2008 Mar 5, 2:50-4:05 pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss questions with others.

Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible. Good luck.

Print Name: $工$| 1. | $/ 20$ |
| :---: | :---: |
| 2. | $/ 20$ |
| 3. | $/ 20$ |
| 4. | $/ 20$ |
| 5. | $/ 20$ |
| 6. | $/ 20$ |
| Total: | $/ 120$ |

Problem 1. Let X be a random variable with the standard exponential distribution with C.D.F.

$$
F(x):=\mathrm{P}[X \leq x]= \begin{cases}0 & x<0 \\ 1-e^{-x} & x \geq 0\end{cases}
$$

a. (5) Evaluate the Moment Generating Function $M(t):=\mathrm{E}\left[e^{t X}\right]$ for all real numbers $t \in \mathbb{R}$ (be careful!).

$$
M(t)=
$$

b. (5) For fixed $0<t<1$ and all $a>0$ use Markov's inequality for $e^{t X}$ to find a bound (which of course will depend on a and t) on $\mathrm{P}[X>a] \leq$ \qquad
c. (5) Find the best bound above, over all possible values of $0<t<1$:
$\mathrm{P}[X>a] \leq$
(your bound will depend on a now but no longer on t)
d. (5) How good is this bound? How does it compare to the Chebychev bound for X ? To the actual value of the function $\mathrm{P}[X>a]$?

Problem 2. For $n \in \mathbb{N}$ let $\left\{X_{i}: 1 \leq i \leq n\right\}$ be random variables on the probability space $(\Omega, \mathcal{F}, \mathrm{P})$, and set $X:=\prod_{i=1}^{n} X_{i}=X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n}$.
a. (5) Give an example of $(\Omega, \mathcal{F}, \mathrm{P}), n$, and $\left\{X_{i}\right\}$ where each $X_{i} \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$ but their product $X \notin L_{1}(\Omega, \mathcal{F}, \mathrm{P}):^{1}$
b. (5) If $\left\{X_{i}\right\}$ are independent, and $t>0$ is any positive real number, are the random variables $\left\{X_{i} \mathbf{1}_{\left\{\left|X_{i}\right| \leq t\right\}}\right\}$ independent too? Why?

[^0]Problem 2 (cont).
Still $\left\{X_{i}: 1 \leq i \leq n\right\}$ are random variables and $X:=\prod_{i=1}^{n} X_{i}$.
c. (5) Prove (for example, by citing an appropriate theorem) that

$$
\lim _{t \rightarrow \infty} \mathrm{E}\left[\prod_{i=1}^{n}\left(\left|X_{i}\right| \wedge t\right)\right]=\mathrm{E}\left[\prod_{i=1}^{n}\left|X_{i}\right|\right]
$$

d. (5) If each $X_{i} \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$, and if $\left\{X_{i}\right\}$ are independent, complete the proof that their product $X=\prod_{i=1}^{n} X_{i}$ is in $L_{1}(\Omega, \mathcal{F}, \mathrm{P})$, too.

Problem 3. Let P and Q be two probability measues on (Ω, \mathcal{F}) that agree on the collection \mathcal{C} of all finite subsets of Ω.
a. (10) If $\Omega=\mathbb{N}$, the positive integers, with $\mathcal{F}=2^{\Omega}$ the σ-algebra of all subsets of Ω, does it follow that $\mathrm{P}(A)=\mathrm{Q}(A)$ for every $A \in \mathcal{F}$?
\bigcirc Yes \bigcirc No \quad Sketch a proof or give a counter-example:
b. (10) If $\Omega=\mathbb{R}_{+}$, the positive real numbers, with $\mathcal{F}=\mathcal{B}(\Omega)$ the Borel σ-algebra, does it follow that $\mathrm{P}(A)=\mathrm{Q}(A)$ for every $A \in \mathcal{F}$?
○
YesNo Sketch a proof or give a counter-example:

Problem 4. Let X_{n} be independent random variables for $n \in \mathbb{N}$ with

$$
\mathrm{P}\left[X_{n}=x\right]= \begin{cases}n^{-1} & x=1 \\ 1-n^{-1} & x=0\end{cases}
$$

a. (4) Does $S_{m}:=\sum_{1 \leq n \leq m} X_{n^{2}}$ converge to a finite random variable S as $m \rightarrow \infty$? 〇 Yes \bigcirc No Why or why not?
b. (4) Does $T_{m}:=\sum_{1 \leq n \leq m} n^{-1} X_{n}$ converge to a finite random variable T as $m \rightarrow \infty$? Yes ○ No Why or why not?
c. (4) Does $U_{m}:=\sum_{1 \leq n \leq m} X_{n}$ converge to a finite random variable U as $m \rightarrow \infty$? 〇 Yes ○ No Why or why not?
d. (4) Does $V_{m}:=\sum_{1 \leq n \leq m} 2^{n} X_{2^{n}}$ converge to a finite random variable V as $m \rightarrow \infty$? Yes ○ No Why or why not?
e. (4) Which, if any, of S, T, U, V is in L_{1} ? No proof req'd.

Problem 5. Let $\Omega=\mathbb{R}_{+}=(0, \infty)$ with Borel sets \mathcal{F}, with probability measure given by

$$
\mathrm{P}((a, b])=e^{-\beta a}-e^{-\beta b}, \quad 0 \leq a \leq b<\infty
$$

for some number $\beta>0$. Define random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ by

$$
X(\omega):=\omega \quad Y(\omega)=e^{-\omega} \quad S_{n}(\omega):=\sum_{k=0}^{n} \omega^{k} / k!
$$

a. (4) What is the probability distribution of X ? Give either the p.d.f. $f(x)$ (correctly for every $x \in \mathbb{R}$) or the name and parameter(s).
b. (4) What is the probability distribution of Y ? Give either the p.d.f. $f(y)$ (correctly for every $y \in \mathbb{R}$) or the name and parameter(s).
c. (6) Find $\mathrm{E}\left[|X|^{p}\right]$ and $\mathrm{E}\left[|Y|^{p}\right]$ for all (positive and negative) $p \in \mathbb{R}$.
d. (6) For which (if any) $\beta>0$ does Lebesgue's dominated convergence theorem apply to the sequence $\left\{S_{n}\right\}$? What does D.C.T. say? What is a dominating random variable?

Problem 6. For 2 pt each, write your answers in the boxes provided, or circle True or False. Each X, X_{n}, Y is a R.V. on some $(\Omega, \mathcal{F}, \mathrm{P})$; each $\mathcal{F}_{i}, \mathcal{G}$ is a sub- σ-algebra of $\mathcal{F} ;$ " $\mathrm{V}(\cdot)$ " denotes variance. No explanations are required.
a. If $X, Y \in L_{2}$ then $X^{2}+X Y \in L_{1}$.

T F
b. If $\mathcal{F}_{1} \Perp \mathcal{F}_{2}$, then $\left(\mathcal{F}_{1} \cap \mathcal{G}\right) \Perp\left(\mathcal{F}_{2} \cap \mathcal{G}\right)$.

T F
c. If $\mathcal{F}_{1} \Perp \mathcal{F}_{2}$, then $\left(\mathcal{F}_{1} \vee \mathcal{G}\right) \Perp\left(\mathcal{F}_{2} \vee \mathcal{G}\right)$.

T F
d. If $X \in L_{1}$ and $X>0$, then $\mathrm{E}[1 / X]<1 / \mathrm{E}[X]$.

T F
e. If $\left\{X_{n}\right\}$ is U.I then $\left\{Y_{n}:=X_{n}{ }^{2}\right\}$ is U.I.

T F
f. If $\left\{X_{n}\right\}$ are independent, then $\sigma\left\{X_{1}, X_{3}, X_{5}\right\} \Perp \sigma\left\{X_{2}, X_{4}, X_{6}\right\}$. T F
g. If $X \Perp Y$ then $1 / X \Perp e^{Y}$.
h. If $X, Y \in L_{1}$ then $\mathrm{E}\left[X 1_{|Y|>n}\right] \rightarrow 0$ as $n \rightarrow \infty$.
i. If $\mathrm{E}\left[e^{X^{2}}\right] \leq 10$, give an upper bound for $\mathrm{P}[|X|>3]$:
j. If $X \Perp Y$ and $X, Y \in L_{2}$ then $\mathrm{V}(X-Y)=\mathrm{V}(X)-\mathrm{V}(Y) \quad$ T F

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}	
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q$	$(q=1-p)$
Exponential	Ex (λ)	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$	
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}	
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	q / p^{2}	$(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	q / p^{2}	$(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{x}\binom{B}{n}}{\binom{A-x}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1}$	$\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$	
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$	
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2}$	$(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$		$\alpha q / p^{2}$	$(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}	
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=\alpha \epsilon^{\alpha} / x^{\alpha+1}$	$x \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$	
Poisson	$\operatorname{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ	
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\right.}{\nu_{1}\left(\nu_{1}\right.}$	-2)
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$	
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$	

[^0]: ${ }^{1}$ Hint: $n=2$ is enough

