Midterm Examination

STA 205: Probability and Measure Theory

Wednesday, 2008 Mar 5, 2:50-4:05 pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing *please* ask me— don't guess, and don't discuss questions with others.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible. Good luck.

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
6.	/20
Total:	/120

Print Name:

Problem 1. Let X be a random variable with the standard exponential distribution with C.D.F.

$$F(x) := \mathsf{P}[X \le x] = \begin{cases} 0 & x < 0\\ 1 - e^{-x} & x \ge 0. \end{cases}$$

a. (5) Evaluate the Moment Generating Function $M(t) := \mathsf{E}[e^{tX}]$ for all real numbers $t \in \mathbb{R}$ (be careful!).

M(t) = _____

b. (5) For fixed 0 < t < 1 and all a > 0 use Markov's inequality for e^{tX} to find a bound (which of course will depend on a and t) on

 $\mathsf{P}[X > a] \leq _$

c. (5) Find the *best* bound above, over all possible values of 0 < t < 1:

 $\mathsf{P}[X > a] \le$ (your bound will depend on *a* now but no longer on *t*)

d. (5) How good is this bound? How does it compare to the Chebychev bound for X? To the *actual* value of the function P[X > a]?

Problem 2. For $n \in \mathbb{N}$ let $\{X_i : 1 \leq i \leq n\}$ be random variables on the probability space $(\Omega, \mathcal{F}, \mathsf{P})$, and set $X := \prod_{i=1}^n X_i = X_1 \cdot X_2 \cdot \ldots \cdot X_n$.

a. (5) Give an example of $(\Omega, \mathcal{F}, \mathsf{P})$, n, and $\{X_i\}$ where each $X_i \in L_1(\Omega, \mathcal{F}, \mathsf{P})$ but their product $X \notin L_1(\Omega, \mathcal{F}, \mathsf{P})$:¹

b. (5) If $\{X_i\}$ are independent, and t > 0 is any positive real number, are the random variables $\{X_i \mathbf{1}_{\{|X_i| \le t\}}\}$ independent too? Why?

2

¹Hint: n = 2 is enough

Spring 2008

Mar 5, 2008

Problem 2 (cont).

Still $\{X_i: 1 \le i \le n\}$ are random variables and $X := \prod_{i=1}^n X_i$.

c. (5) Prove (for example, by citing an appropriate theorem) that

$$\lim_{t \to \infty} \mathsf{E}\left[\prod_{i=1}^{n} \left(|X_i| \wedge t\right)\right] = \mathsf{E}\left[\prod_{i=1}^{n} |X_i|\right]$$

d. (5) If each $X_i \in L_1(\Omega, \mathcal{F}, \mathsf{P})$, and if $\{X_i\}$ are independent, complete the proof that their product $X = \prod_{i=1}^n X_i$ is in $L_1(\Omega, \mathcal{F}, \mathsf{P})$, too.

Problem 3. Let P and Q be two probability measures on (Ω, \mathcal{F}) that agree on the collection \mathcal{C} of all **finite** subsets of Ω .

a. (10) If $\Omega = \mathbb{N}$, the positive integers, with $\mathcal{F} = 2^{\Omega}$ the σ -algebra of all subsets of Ω , does it follow that $\mathsf{P}(A) = \mathsf{Q}(A)$ for every $A \in \mathcal{F}$? \bigcirc Yes \bigcirc No Sketch a proof or give a counter-example:

b. (10) If $\Omega = \mathbb{R}_+$, the positive real numbers, with $\mathcal{F} = \mathcal{B}(\Omega)$ the Borel σ -algebra, does it follow that $\mathsf{P}(A) = \mathsf{Q}(A)$ for every $A \in \mathcal{F}$? \bigcirc Yes \bigcirc No Sketch a proof or give a counter-example:

Problem 4. Let X_n be independent random variables for $n \in \mathbb{N}$ with

$$\mathsf{P}[X_n = x] = \begin{cases} n^{-1} & x = 1\\ 1 - n^{-1} & x = 0. \end{cases}$$

- a. (4) Does $S_m := \sum_{1 \le n \le m} X_{n^2}$ converge to a finite random variable S as $m \to \infty$? \bigcirc Yes \bigcirc No Why or why not?
- b. (4) Does $T_m := \sum_{1 \le n \le m} n^{-1} X_n$ converge to a finite random variable T as $m \to \infty$? \bigcirc Yes \bigcirc No Why or why not?
- c. (4) Does $U_m := \sum_{1 \le n \le m} X_n$ converge to a finite random variable U as $m \to \infty$? \bigcirc Yes \bigcirc No Why or why not?
- d. (4) Does $V_m := \sum_{1 \le n \le m} 2^n X_{2^n}$ converge to a finite random variable V as $m \to \infty$? \bigcirc Yes \bigcirc No Why or why not?
- e. (4) Which, if any, of S, T, U, V is in L_1 ? No proof req'd.

5

Mar 5, 2008

Problem 5. Let $\Omega = \mathbb{R}_+ = (0, \infty)$ with Borel sets \mathcal{F} , with probability measure given by

$$\mathsf{P}\big((a, b]\big) = e^{-\beta a} - e^{-\beta b}, \qquad 0 \le a \le b < \infty$$

for some number $\beta > 0$. Define random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ by

$$X(\omega) := \omega$$
 $Y(\omega) = e^{-\omega}$ $S_n(\omega) := \sum_{k=0}^n \omega^k / k!$

- a. (4) What is the probability distribution of X? Give either the p.d.f. f(x) (correctly for every $x \in \mathbb{R}$) or the name and parameter(s).
- b. (4) What is the probability distribution of Y? Give either the p.d.f. f(y) (correctly for every $y \in \mathbb{R}$) or the name and parameter(s).
- c. (6) Find $\mathsf{E}[|X|^p]$ and $\mathsf{E}[|Y|^p]$ for all (positive and negative) $p \in \mathbb{R}$.
- d. (6) For which (if any) $\beta > 0$ does Lebesgue's **dominated convergence theorem** apply to the sequence $\{S_n\}$? What does D.C.T. say? What is a dominating random variable?

Problem 6. For 2pt each, write your answers in the boxes provided, or circle True or False. Each X, X_n, Y is a R.V. on some $(\Omega, \mathcal{F}, \mathsf{P})$; each $\mathcal{F}_i, \mathcal{G}$ is a sub- σ -algebra of \mathcal{F} ; " $\mathsf{V}(\cdot)$ " denotes variance. No explanations are required.

a. If
$$X, Y \in L_2$$
 then $X^2 + XY \in L_1$. T F

b. If
$$\mathcal{F}_1 \perp \!\!\!\perp \mathcal{F}_2$$
, then $(\mathcal{F}_1 \cap \mathcal{G}) \perp \!\!\!\perp (\mathcal{F}_2 \cap \mathcal{G})$. T F

c. If
$$\mathcal{F}_1 \perp \!\!\!\perp \mathcal{F}_2$$
, then $(\mathcal{F}_1 \lor \mathcal{G}) \perp \!\!\!\perp (\mathcal{F}_2 \lor \mathcal{G})$. T F

d. If
$$X \in L_1$$
 and $X > 0$, then $\mathsf{E}[1/X] < 1/\mathsf{E}[X]$. $\mathsf{T} \mathsf{F}$

- e. If $\{X_n\}$ is U.I then $\{Y_n := X_n^2\}$ is U.I. $\mathsf{T} \mathsf{F}$
- f. If $\{X_n\}$ are independent, then $\sigma\{X_1, X_3, X_5\} \perp \sigma\{X_2, X_4, X_6\}$. T F
- g. If $X \perp Y$ then $1/X \perp e^Y$. TF
- h. If $X, Y \in L_1$ then $\mathsf{E}[X 1_{|Y|>n}] \to 0$ as $n \to \infty$. T F
- i. If $\mathsf{E}[e^{X^2}] \leq 10$, give an upper bound for $\mathsf{P}[|X| > 3]$:
- j. If $X \perp Y$ and $X, Y \in L_2$ then V(X Y) = V(X) V(Y) T F

Mar 5, 2008

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathbf{pdf}/\mathbf{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{n-x}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1 - P) \frac{N - n}{N - 1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} (e^{\sigma^2} 1)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$lpha q/p^2$	(q = 1 - p)
		$f(y) = {\binom{y-1}{y-\alpha}} p^{\alpha} q^{y-\alpha}$	$y\in\{\alpha,\ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x\in(\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$rac{\epsilon^2 lpha}{(lpha-1)^2(lpha-2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2 - 2)^2}$	$\frac{\nu_2 - 2)}{2 - 4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x\in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	