Midterm Examination

STA 205: Probability and Measure Theory
Wednesday, 2009 Mar 18, 2:50-4:05 pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing please ask me - don't guess, and don't discuss questions with others.

Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible. Good luck.

Problem 1. For positive real numbers $\epsilon>0, \alpha>0$ let X and $\left\{X_{j}\right\}$ be random variables with the Pareto $\mathrm{Pa}(\alpha, \epsilon)$ distribution, with with C.D.F.

$$
F(x):=\mathrm{P}[X \leq x]=\left\{\begin{array}{lr}
0 & -\infty<x \leq \epsilon \\
1-(x / \epsilon)^{-\alpha} & \epsilon<x<\infty .
\end{array}\right.
$$

and hence p.d.f. $f(x)=\alpha \epsilon^{\alpha} x^{-\alpha-1} \mathbf{1}_{\{x>\epsilon\}}$.
a. (5) For which $\alpha, \epsilon>0$ are $\left\{X_{j}\right\}$ uniformly integrable? Use the definition of U.I. directly.
b. (5) Evaluate the expectation $\mathrm{E}\left[X^{p}\right]$ for all real numbers $p \in \mathbb{R}$. For which p is $X \in L_{p}$? (Of course this will depend on (α, ϵ)) $\mathrm{E} X^{p}=$

Problem 1 (cont).
c. (4) For which $\alpha, \epsilon>0$ does $Y=\sum_{j=1}^{\infty} \mathbf{1}_{\left\{X_{j}>j\right\}}$ converge:
in L_{1} ? In L_{∞} ?
Does it matter whether or not the $\left\{X_{j}\right\}$ are independent? \bigcirc Yes \bigcirc No
d. (4) Now assume that $\left\{X_{j}\right\} \stackrel{\mathrm{iid}}{\sim} \mathrm{Pa}(\alpha, \epsilon)$ are independent, and let $A_{n}=$ $\left\{X_{1}<\ldots<X_{n}\right\}$ be the event that the first n of them are in increasing order (by convention, $A_{0}=A_{1}=\Omega$). Is the random variable $Z=$ $\sum_{n=0}^{\infty} \mathbf{1}_{A_{n}}$ in L_{1} ? \bigcirc Yes \bigcirc No If so, find $\mathrm{E} Z$. If not, explain.
(Hint: Finding $\mathrm{P}\left[A_{n}\right]$ is easy, without doing any integration.)
e. (2) Evaluating the expectations of Y and Z in parts c) and d) above relies on two theorems we've learned this year - please name them.

Problem 2. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space, and $\mathcal{G} \subset \mathcal{F}$ a sub- σ-algebra. Let \mathcal{H} be the collection of all events independent ${ }^{1}$ of \mathcal{G} :

$$
\mathcal{H}=\{A \in \mathcal{F}: A \Perp G \text { for each } G \in \mathcal{G}\} .
$$

a. (10) Is \mathcal{H} a π-system?No Sketch a proof or a counter-example with finite Ω :
b. (5) Is \mathcal{H} a λ-system?
\bigcirc Yes \bigcirc No Sketch a proof or a counter-example with finite Ω :
c. (5) Is \mathcal{H} a σ-algebra? \bigcirc Yes \bigcirc No Why?

[^0]Problem 3. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be $\Omega=(0,1]$, the unit interval, with Borel sets \mathcal{F} and Lebesgue measure P , and let X, Y, and $\left\{X_{n}\right\}$ all be L_{1} (i.e. integrable) random variables on $(\Omega, \mathcal{F}, \mathrm{P})$. Suppose $X_{n}(\omega) \rightarrow X(\omega)$ as $n \rightarrow \infty$ for each $\omega \in \Omega$, and let $\left\{A_{n}\right\} \subset \mathcal{F}$ be events.

Indicate which statements below are True or False. If true, indicate which applies: Fatou's Lemma, Lebesgue's dominated (LDC) or monotone (MCT) convergence theorem, the Borel-Cantelli lemma (or Borel's zero-one law), or the inequalities named after Jensen, Minkowski, Hölder, or Markov. If you've forgotten the name of a result or inequality, sketch its statement.
a. (2) T F If $X_{n} \geq 0$, then $\liminf _{n \rightarrow \infty} \mathrm{E} X_{n} \geq \mathrm{E} X$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
b. (2) T F If $\left|X_{n}\right| \leq 10$, then $\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\mathrm{E} X$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
c. (2) T F If $\mathrm{E}\left|X_{n}\right| \leq 10$, then $\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\mathrm{E} X$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
d. (2) T F If $\left\|X_{n}\right\|_{2} \leq 10$, then $\mathrm{P}\left[\left|X_{n}\right|>t\right]<100 / t^{2}$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
e. (2) T F $\mathrm{E} X \leq \log \mathrm{E} e^{X}$
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov

Problem 3 (cont).
Recall that X, Y, and $\left\{X_{n}\right\}$ are L_{1} random variables, and $\left\{A_{n}\right\}$ events, with $(\forall \omega \in \Omega) X_{n}(\omega) \rightarrow X(\omega)$. Choose True or False, and indicate reason(s).
f. (2) T F If $\sum_{n<\infty} \mathrm{P}\left(A_{n}\right)<\infty$, then $\mathrm{P}\left[\cup_{n<\infty} A_{n}\right]=0$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
g. (2) T F If $X_{n}=X \mathbf{1}_{|X| \leq n}$, then $\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\mathrm{E} X$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
h. (2) T F If $g(x)$ is bounded \& measurable, $\lim _{n \rightarrow \infty} \mathrm{E} g\left(X_{n}\right)=\mathrm{E} g(X)$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
i. (2) T F $\quad \mathrm{E}\left|X_{1} X_{2}\right| \leq\left\|X_{1}\right\|_{3}\left\|X_{2}\right\|_{1.5}$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
j. (2) T F If $X_{n} \geq 0$, then $\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\mathrm{E} X$.
\bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov

Problem 4. Let $\Omega=(0,1]$ with Borel sets \mathcal{F} and probability measure

$$
\mathrm{P}(d \omega):=2 \omega d \omega
$$

Define random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ by

$$
X(\omega):=\omega \quad S_{n}(\omega)=\sum_{k=0}^{n-1}(1-\omega)^{k}, \quad n \in \mathbb{N}
$$

a. (4) What is the probability distribution of X ? Give its name and parameter(s) (it's on the attached sheet):
b. (8) Give the explicit definition of a random variable $U=U(\omega)$ on $(\Omega, \mathcal{F}, \mathrm{P})$ with the standard uniform distribution $U \sim \operatorname{Un}(0,1)$: $U(\omega)=$
c. (8) What does Lebesgue's dominated convergence theorem say about the sequence $\left\{S_{n}\right\}$? What $Y \in L_{1}$ dominates, what is $\|Y\|_{1}$, and what is the limit S_{∞} of $\left\{S_{n}\right\}$?

Problem 5. For 2 pt each, write your answers in the boxes provided, or circle True or False. Each X, X_{n}, Y is a R.V. on some $(\Omega, \mathcal{F}, \mathrm{P})$; each \mathcal{F}_{i}, \mathcal{G} is a sub- σ-algebra of $\mathcal{F} ;$ " $\mathrm{V}(\cdot)$ " denotes variance; $g(x)$ is an arbitrary Borel function. No explanations are required.
a. If $X, Y \in L_{2}$ then $X^{2} Y^{2} \in L_{1}$. T F
b. If $Y:=g(X)$ is simple ${ }^{2}$ then X is simple too. T F
c. If X has a continuous distribution, then so does $Y:=g(X)$. T F
d. If $\mathcal{G} \Perp \mathcal{F}_{1}$ and $\mathcal{G} \Perp \mathcal{F}_{2}$, then $\mathcal{G} \Perp\left(\mathcal{F}_{1} \vee \mathcal{F}_{2}\right) . \quad$ T F
e. If $\mathcal{G} \Perp \mathcal{F}_{1}$ and $\mathcal{G} \Perp \mathcal{F}_{2}$, then $\mathcal{G} \Perp\left(\mathcal{F}_{1} \cap \mathcal{F}_{2}\right)$. T F
f. If $X \in L_{1}$, then $\mathrm{E}[\exp (X)] \leq \exp (\mathrm{E}[X])$. T F
g. If $\left\{X_{n} \geq 0\right\}$ and $\mathrm{E} X_{n} \leq 100$ then $\left\{Y_{n}:=\sqrt{X_{n}}\right\}$ is U.I. T F
h. If $X \Perp Y$ then $1 / X \Perp e^{Y}$. T F
i. If $X \in L_{1}$ then $\mathrm{E}\left[X \mathbf{1}_{\{Y>n\}}\right] \rightarrow 0$ as $n \rightarrow \infty$. T F
j. If $\mathrm{E}\left[2^{X^{2}}\right] \leq 16$, give an upper bound for $\mathrm{P}[|X|>3]$:

[^1]
Blank Worksheet

Name:
STA 205: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q \quad(q=1-p)$
Exponential	$\operatorname{Ex}(\lambda)$	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	$q / p^{2} \quad(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	$q / p^{2} \quad(y=x+1)$
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1} \quad\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}} 1\right)$
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2} \quad(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2} \quad(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=\alpha \epsilon^{\alpha} / x^{\alpha+1}$	$x \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$
Poisson	$\mathrm{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} & f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \times \\ & \quad x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2}$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-4\right)}$
Student t	t_{ν}	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0	$\nu /(\nu-2)$
Uniform	$\operatorname{Un}(a, b)$	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Weibull	$\mathrm{We}(\alpha, \beta)$	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$

[^0]: ${ }^{1}$ The notation " $A \Perp G$ " means $\mathrm{P}[A \cap G]=\mathrm{P}[A] \mathrm{P}[G]$.

[^1]: ${ }^{2} \mathrm{~A}$ simple $\mathrm{R} . \mathrm{V}$. is one that takes on only finitely-many different values.

