Midterm Examination

STA 205: Probability and Measure Theory

Wednesday, 2009 Mar 18, 2:50-4:05 pm

This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may not share materials. If a question seems ambiguous or confusing *please* ask me— don't guess, and don't discuss questions with others.

Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test for this. It is to your advantage to write your solutions as clearly as possible. Good luck.

		1.	/20
		2.	/20
		3.	/20
Print Name:		4.	/20
		5.	/20
		Total:	/100

Problem 1. For positive real numbers $\epsilon > 0$, $\alpha > 0$ let X and $\{X_j\}$ be random variables with the Pareto $\mathsf{Pa}(\alpha, \epsilon)$ distribution, with with C.D.F.

$$F(x) := \mathsf{P}[X \le x] = \begin{cases} 0 & -\infty < x \le \epsilon \\ 1 - (x/\epsilon)^{-\alpha} & \epsilon < x < \infty. \end{cases}$$

and hence p.d.f. $f(x) = \alpha \epsilon^{\alpha} x^{-\alpha - 1} \mathbf{1}_{\{x > \epsilon\}}$.

a. (5) For which $\alpha, \epsilon > 0$ are $\{X_j\}$ uniformly integrable? Use the definition of U.I. directly.

b. (5) Evaluate the expectation $\mathsf{E}[X^p]$ for all real numbers $p \in \mathbb{R}$. For which p is $X \in L_p$? (Of course this will depend on (α, ϵ)) $\mathsf{E}X^p =$ Problem 1 (cont).

c. (4) For which $\alpha, \epsilon > 0$ does $Y = \sum_{j=1}^{\infty} \mathbf{1}_{\{X_j > j\}}$ converge:

in L_1 ? In L_∞ ? Does it matter whether or not the $\{X_j\}$ are independent? \bigcirc Yes \bigcirc No

d. (4) Now assume that $\{X_j\} \stackrel{\text{iid}}{\sim} \mathsf{Pa}(\alpha, \epsilon)$ are independent, and let $A_n = \{X_1 < \ldots < X_n\}$ be the event that the first *n* of them are in increasing order (by convention, $A_0 = A_1 = \Omega$). Is the random variable $Z = \sum_{n=0}^{\infty} \mathbf{1}_{A_n}$ in L_1 ? \bigcirc Yes \bigcirc No If so, find $\mathsf{E}Z$. If not, explain. (Hint: Finding $\mathsf{P}[A_n]$ is easy, without doing any integration.)

e. (2) Evaluating the expectations of Y and Z in parts c) and d) above relies on two theorems we've learned this year— please name them.

Spring 2009

Problem 2. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space, and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. Let \mathcal{H} be the collection of all events independent¹ of \mathcal{G} :

 $\mathcal{H} = \{ A \in \mathcal{F} : A \perp \!\!\!\perp G \text{ for each } G \in \mathcal{G} \}.$

a. (10) Is \mathcal{H} a π -system?

 \bigcirc Yes \bigcirc No Sketch a proof or a counter-example with finite Ω :

b. (5) Is \mathcal{H} a λ -system?

 \bigcirc Yes \bigcirc No Sketch a proof or a counter-example with finite Ω :

c. (5) Is \mathcal{H} a σ -algebra?

 \bigcirc Yes \bigcirc No Why?

¹The notation " $A \perp G$ " means $\mathsf{P}[A \cap G] = \mathsf{P}[A] \mathsf{P}[G]$.

Problem 3. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be $\Omega = (0, 1]$, the unit interval, with Borel sets \mathcal{F} and Lebesgue measure P , and let X, Y, and $\{X_n\}$ all be L_1 (i.e. **integrable**) random variables on $(\Omega, \mathcal{F}, \mathsf{P})$. Suppose $X_n(\omega) \to X(\omega)$ as $n \to \infty$ for each $\omega \in \Omega$, and let $\{A_n\} \subset \mathcal{F}$ be events.

Indicate which statements below are True or False. If true, indicate which applies: Fatou's Lemma, Lebesgue's dominated (LDC) or monotone (MCT) convergence theorem, the Borel-Cantelli lemma (or Borel's zero-one law), or the inequalities named after Jensen, Minkowski, Hölder, or Markov. If you've forgotten the name of a result or inequality, sketch its statement.

- a. (2) $\mathsf{T} \mathsf{F}$ If $X_n \ge 0$, then $\liminf_{n\to\infty} \mathsf{E} X_n \ge \mathsf{E} X$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- b. (2) T F If $|X_n| \le 10$, then $\lim_{n\to\infty} \mathsf{E}X_n = \mathsf{E}X$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- c. (2) T F If $E|X_n| \le 10$, then $\lim_{n\to\infty} EX_n = EX$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- d. (2) T F If $||X_n||_2 \le 10$, then $\mathsf{P}[|X_n| > t] < 100/t^2$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- e. (2) T F $EX \leq \log Ee^X$ \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov

Spring 2009

Problem 3 (cont).

Recall that X, Y, and $\{X_n\}$ are L_1 random variables, and $\{A_n\}$ events, with $(\forall \omega \in \Omega) X_n(\omega) \to X(\omega)$. Choose True or False, and indicate reason(s).

- f. (2) T F If $\sum_{n < \infty} \mathsf{P}(A_n) < \infty$, then $\mathsf{P}[\bigcup_{n < \infty} A_n] = 0$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- g. (2) T F If $X_n = X \mathbf{1}_{|X| \le n}$, then $\lim_{n \to \infty} \mathsf{E} X_n = \mathsf{E} X$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- h. (2) T F If g(x) is bounded & measurable, $\lim_{n\to\infty} \mathsf{E}g(X_n) = \mathsf{E}g(X)$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- i. (2) T F $E|X_1X_2| \le ||X_1||_3 ||X_2||_{1.5}$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov
- j. (2) T F If $X_n \ge 0$, then $\lim_{n\to\infty} \mathsf{E}X_n = \mathsf{E}X$. \bigcirc Fatou \bigcirc DCT \bigcirc MCT \bigcirc Borel \bigcirc Jensen \bigcirc Mink \bigcirc Höld \bigcirc Markov

Problem 4. Let $\Omega = (0, 1]$ with Borel sets \mathcal{F} and probability measure

$$\mathsf{P}(d\omega) := 2\,\omega\,d\omega.$$

Define random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ by

$$X(\omega) := \omega$$
 $S_n(\omega) = \sum_{k=0}^{n-1} (1-\omega)^k, \quad n \in \mathbb{N}$

a. (4) What is the probability distribution of X? Give its name and parameter(s) (it's on the attached sheet):

b. (8) Give the explicit definition of a random variable $U = U(\omega)$ on $(\Omega, \mathcal{F}, \mathsf{P})$ with the standard uniform distribution $U \sim \mathsf{Un}(0, 1)$: $U(\omega) =$

c. (8) What does Lebesgue's **dominated convergence theorem** say about the sequence $\{S_n\}$? What $Y \in L_1$ dominates, what is $||Y||_1$, and what is the limit S_{∞} of $\{S_n\}$?

Problem 5. For 2pt each, write your answers in the boxes provided, or circle True or False. Each X, X_n, Y is a R.V. on some $(\Omega, \mathcal{F}, \mathsf{P})$; each \mathcal{F}_i , \mathcal{G} is a sub- σ -algebra of \mathcal{F} ; " $\mathsf{V}(\cdot)$ " denotes variance; g(x) is an arbitrary Borel function. No explanations are required.

a. If
$$X, Y \in L_2$$
 then $X^2 Y^2 \in L_1$. T F

b. If
$$Y := g(X)$$
 is simple² then X is simple too. T F

- c. If X has a continuous distribution, then so does Y := g(X). T F
- d. If $\mathcal{G} \perp \mathcal{F}_1$ and $\mathcal{G} \perp \mathcal{F}_2$, then $\mathcal{G} \perp \mathcal{F}_1 \lor \mathcal{F}_2$). $\mathsf{T} \mathsf{F}$
- e. If $\mathcal{G} \perp \mathcal{F}_1$ and $\mathcal{G} \perp \mathcal{F}_2$, then $\mathcal{G} \perp \mathcal{F}_1 \cap \mathcal{F}_2$). $\mathsf{T} \mathsf{F}$

f. If
$$X \in L_1$$
, then $\mathsf{E}[\exp(X)] \le \exp(\mathsf{E}[X])$. T F

g. If
$$\{X_n \ge 0\}$$
 and $\mathsf{E}X_n \le 100$ then $\{Y_n := \sqrt{X_n}\}$ is U.I. $\mathsf{T}\mathsf{F}$

- h. If $X \perp \!\!\!\perp Y$ then $1/X \perp \!\!\!\perp e^Y$. TF
- i. If $X \in L_1$ then $\mathsf{E}[X \mathbf{1}_{\{Y > n\}}] \to 0$ as $n \to \infty$. T F

j. If
$$\mathsf{E}[2^{X^2}] \leq 16$$
, give an upper bound for $\mathsf{P}[|X| > 3]$:

 $^{^{2}}$ A simple R.V. is one that takes on only finitely-many different values.

Blank Worksheet

Name: ____

Another Blank Worksheet

Name	Notation	$\mathbf{pdf}/\mathbf{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P \left(1{-}P\right)^{\underline{N-n}}_{\overline{N-1}}$	$\left(P = \frac{A}{A+B}\right)$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$lpha q/p^2$	(q = 1 - p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y\in\{\alpha,\ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x\in (\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$rac{\epsilon^2 lpha}{(lpha-1)^2(lpha-2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_1)}{\nu_1(\nu_2-2)}$	$\frac{\nu_2 - 2)}{2 - 4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	$t_{ u}$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	u/(u-2)	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x\in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	