Sta 205 : Homework 1

Due : January 21, 2009

I. Fields and σ - fields.

(A) For a three-point outcome set $\Omega=\{a, b, c\}$ and $\mathcal{C}:=\{\{a\}\}$, enumerate the class \aleph of all σ-fields \mathcal{F} on Ω that contain \mathcal{C}, i.e., satisfy $\mathcal{C} \subset \mathcal{F}$. Also find $\sigma(\mathcal{C})$.
(B) For each integer $n \in \mathbb{N}:=\{1,2,3, \ldots\}$, set

$$
A_{n}:=\left\{\frac{m}{n}: \quad m \in \mathbb{N}\right\} .
$$

Find $\limsup \sup _{n \rightarrow \infty} A_{n}$ and $\liminf _{n \rightarrow \infty} A_{n}$.
(C) Let f and $\left\{f_{n}\right\}$ be real-valued functions on any set Ω, and let ϵ_{k} be any decreasing sequence such that $\epsilon_{k} \searrow 0$ as $k \rightarrow \infty$. Show that:

$$
\left\{\omega: f_{n}(\omega) \rightarrow f(\omega)\right\}=\cap_{k=1}^{\infty} \cup_{N=1}^{\infty} \cap_{n=N}^{\infty}\left\{\omega:\left|f_{n}(\omega)-f(\omega)\right|<\epsilon_{k}\right\} .
$$

(D) Find a set Ω and two fields \mathcal{F}_{1} and \mathcal{F}_{2} for which $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is not a field.
(E) Suppose a collection $\left\{\mathcal{F}_{n}: n \in \mathbb{N}\right\}$ of σ-fields satisfies the relation $\mathcal{F}_{j} \subset \mathcal{F}_{j+1}$ for every $j \in \mathbb{N}$. Does it follow that $\cup \mathcal{F}_{j}$ is a field? (the answer is "yes" - show why)
(F) Under the same conditions, is $\cup \mathcal{F}_{j}$ is a σ-field? (this one is "no" - find a counterexample. The idea is to find a sequence $A_{n} \in \mathcal{F}_{n}$ with $\cup_{n} A_{n} \notin \mathcal{F}_{j}$ for every j, hence $\left.\cup_{n} A_{n} \notin \cup_{j} \mathcal{F}_{j}\right)$.
(G) Let $\Omega:=(0,1]$ be the half-open unit interval, and let $n \in \mathbb{N}$ be a FIXED positive integer (say, three). Set

$$
\mathcal{B}_{n}:=\left\{\left(0, j / 2^{n}\right], j \in\left\{0,1, \ldots, 2^{n}\right\}\right\},
$$

the collection of half-open intervals from zero up to an integral multiple of 2^{-n}. Describe in words the σ-field

$$
\mathcal{F}_{n}:=\sigma\left(\mathcal{B}_{n}\right)
$$

generated by \mathcal{B}_{n}. Tell how many elements \mathcal{B}_{n} has, and how many elements \mathcal{F}_{n} has.

II. Asymptotic Density.

For any subset $A \subset \mathbb{N}$ of positive integers write $\#(A)$ for its cardinality, i.e., the number of elements it contains. The set A has "asymptotic density" $d(A)$ if the limit

$$
\begin{equation*}
d(A):=\lim _{n \rightarrow \infty} \frac{\#(A \cap\{1,2, \ldots, n\})}{n} \tag{1}
\end{equation*}
$$

exists (i.e., the lim-sup and lim-inf coincide). Denote by

$$
\mathcal{A}:=\{A \subset \mathbb{N}: d(A) \text { exists }\}
$$

the collection of all subsets of \mathbb{N} that have an asymptotic density.
(A) Show carefully that the set of even numbers $E:=2 \mathbb{N}=\{2,4, .$.$\} has asymptotic$ density $d(E)=1 / 2$. By "carefully" I mean: compute the ratio in Equation (??) exactly, for every n (consider even and odd n separately), and compute the limit.
(B) Find a set $B \subset \mathbb{N}$ that does not have an asymptotic density.
(C) Find a set $A \in \mathcal{A}$ for which $A \cap E \notin \mathcal{A}$, and conclude that \mathcal{A} is not a field. Hint: the on-line lecture notes might help if you get stuck.

