I. \(\sigma \)-algebras and Probability Assignments.

(A) Let \(\{A, B, C\} \subset \mathcal{F} \) be three events in a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Recall that a partition is a finite or countable collection of disjoint events \(\Lambda_j \in \mathcal{F} \) with \(\bigcup \Lambda_j = \Omega \).

Enumerate all the elements of the partition \(\mathcal{P} = \sigma(A, B, C) \) generated by these events (i.e., \(\mathcal{P} \) is the smallest partition for which \(\{A, B, C\} \subset \sigma(\mathcal{P}) \)). How many (nonempty) elements does \(\mathcal{P} \) have, at most? How many, at minimum?

(B) How many elements does the \(\sigma \)-algebra \(\sigma(\mathcal{P}) \) contain? Describe them in words (don’t list them)

(C) Let’s further assume that the above mentioned events \(A, B, C \) are disjoint with probabilities \(\mathbb{P}(A) = 0.6, \mathbb{P}(B) = 0.3, \mathbb{P}(C) = 0.1 \). Calculate the probability of every event in \(\sigma(A, B, C) \).

II. Fun with null sets.

(A) Let \(\{A_n, n \in \mathbb{N}\} \) be events such that \(\mathbb{P}(A_n) = 0, \forall n \). Show that \(\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = 0 \).

(B) Let \(\{B_n, n \in \mathbb{N}\} \) be events such that \(\mathbb{P}(B_n) = 1, \forall n \in \mathbb{N} \). What is \(\mathbb{P}(\bigcap_{n=1}^{\infty} B_n) \) ?

(C) Now consider the set of events, \(\{E_\alpha, \alpha \in \mathbb{R}\} \), such that \(\mathbb{P}(E_\alpha) = 0, \forall \alpha \in \mathbb{R} \). Does it necessarily follow that \(\mathbb{P}(\bigcup_{\alpha \in \mathbb{R}} E_\alpha) = 0 \) ? If yes, give a proof, otherwise give a counter example.

(D) Finally, let \(\{B_k\} \) be a collection of events such that, \(\sum_{k=1}^{n} \mathbb{P}(B_k) > n - 1 \). Show that \(\mathbb{P}(\bigcap_{k=1}^{n} B_k) > 0 \) for every \(n \in \mathbb{N} \).

III. Distribution functions and continuity.

(A) Give an example of a function which is continuous on \(\mathbb{R} \), but not uniformly continuous.

(B) Let \(G \) be a continuous distribution function on \(\mathbb{R} \). Show that \(G \) is in fact uniformly continuous. Hint: Consider the points \(\{x_i\} \) for which \(G(x_i) = i/n \) for \(0 < i < n \).

(C) Now let \(F \) be any distribution function on \(\mathbb{R} \). Show that \(F \) can have at most countably many discontinuities. Hint: Consider the open intervals \((F(x-), F(x))\) for discontinuity points \(x \).
IV. π & λ - systems.

(A) Let $\Omega = (0, 1] \times (0, 1]$, and consider the following collections of subsets of Ω:

$$\mathcal{A} = \{(0, a] \times (0, b] : 0 < a, b \leq 1\}$$

i. Is \mathcal{A} a π - system? Why or why not?
ii. Is \mathcal{A} a λ - system? Why or why not?

(B) Consider the following collecton of subsets of the real line:

$$\mathcal{B} = \{(-\infty, b], b \in \mathbb{R}\}$$

i. Show that \mathcal{B} is a π - system, but not a λ system.
ii. What is the λ - system generated by \mathcal{B}?

V. π - systems and fields.

(A) Let \mathcal{C} be a non empty collection of subsets of Ω, and let $\mathcal{A}(\mathcal{C})$ be the minimal field over \mathcal{C}. Show that $\mathcal{A}(\mathcal{C})$ consists of sets of the form

$$\bigcup_{i=1}^{m} \bigcap_{j=1}^{n} A_{ij},$$

where for each pair (i, j) either $A_{ij} \in \mathcal{C}$ or $A_{ij}^{c} \in \mathcal{C}$, and where the m sets $\{B_{i} := \bigcap_{j=1}^{n} A_{ij}, 1 \leq i \leq m\}$, are disjoint. Thus, we can represent explicitly the sets in $\mathcal{A}(\mathcal{C})$, however it turns out that, we cannot do the same for the σ-field over \mathcal{C}.

(B) Now let’s further assume that \mathcal{C} is a π system. Show that if P_1, P_2 are two probability measures which agree on \mathcal{C}, then P_1, P_2 must also agree on $\mathcal{A}(\mathcal{C})$. Hint: Use part(A) and the inclusion-exclusion principle.

(C) Find two probability measures P_1, P_2 on some set Ω that agree on a collection of subsets \mathcal{C}, but not on $\mathcal{A}(\mathcal{C})$. Obviously (from the previous part) \mathcal{C} cannot be a π-system. Hint: It’s enough to have $\mathcal{C} = \{A, B\}$ with just two elements, on an outcome space Ω with just three points.