Sta 205 : Homework 2

Due : January 28, 2009

I. σ - algebras and Probability Assignments.

- (A) Let $\{A, B, C\} \subset \mathcal{F}$ be three events in a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Recall that a *partition* is a finite or countable collection of *disjoint* events $\Lambda_j \in \mathcal{F}$ with $\cup \Lambda_j = \Omega$. Enumerate all the elements of the partition $\mathcal{P} = \mathcal{P}(A, B, C)$ generated by these events (*i.e.*, \mathcal{P} is the smallest partition for which $\{A, B, C\} \subset \sigma(\mathcal{P})$). How many (nonempty) elements does \mathcal{P} have, at most? How many, at minimum?
- (B) How many elements does the σ -algebra $\sigma(\mathcal{P})$ contain? Describe them in words (don't list them)
- (C) Let's further assume that the above mentioned events A, B, C are disjoint with probabilities P(A) = 0.6, P(B) = 0.3, P(C) = 0.1. Calculate the probability of every event in $\sigma(A, B, C)$.

II. Fun with null sets.

- (A) Let $\{A_n, n \in \mathbb{N}\}$ be events such that $\mathsf{P}(A_n) = 0$, $\forall n$. Show that $\mathsf{P}(\bigcup_{n=1}^{\infty} A_n) = 0$.
- (B) Let $\{B_n, n \in \mathbb{N}\}$ be events such that $\mathsf{P}(B_n) = 1, \forall n \in \mathbb{N}$. What is $\mathsf{P}(\bigcap_{n=1}^{\infty} B_n)$?
- (C) Now consider the set of events, $\{E_{\alpha}, \alpha \in \mathbb{R}\}$, such that $\mathsf{P}(E_{\alpha}) = 0, \forall \alpha \in \mathbb{R}$. Does it necessarily follow that $\mathsf{P}(\bigcup_{\alpha \in \mathbb{R}} E_{\alpha}) = 0$? If yes, give a proof, otherwise give a counter example.
- (D) Finally, let $\{B_k\}$ be a collection of events such that, $\sum_{k=1}^{n} \mathsf{P}(B_k) > n-1$. Show that $\mathsf{P}(\bigcap_{k=1}^{n} B_k) > 0$ for every $n \in \mathbb{N}$.

III. Distribution functions and continuity.

- (A) Give an example of a function which in continuous on \mathbb{R} , but **not** uniformly continuous.
- (B) Let G be a continuous distribution function on \mathbb{R} . Show that G is in fact uniformly continuous. Hint: Consider the points $\{x_i\}$ for which $G(x_i) = i/n$ for 0 < i < n.
- (C) Now let F be any distribution function on \mathbb{R} . Show that F can have **at most** countably many discontinuities. Hint: Consider the open intervals (F(x-), F(x)) for discontinuity points x.

IV. $\pi \& \lambda$ - systems.

(A) Let $\Omega = (0, 1] \times (0, 1]$, and consider the following collections of subsets of Ω :

 $\mathcal{A} = \{ (0, a] \times (0, b] : 0 < a, b \le 1 \}$

i. Is $\mathcal{A} \neq \pi$ - system? Why or why not?

- ii. Is $\mathcal{A} \neq \lambda$ system? Why or why not?
- (B) Consider the following collecton of subsets of the real line:

$$\mathcal{B} = \{(-\infty, b], \ b \in \mathbb{R}\}$$

- i. Show that \mathcal{B} is a π system, but not a λ system.
- ii. What is the λ system generated by \mathcal{B} ?

V. π - systems and fields.

(A) Let \mathcal{C} be a non empty collection of subsets of Ω , and let $\mathcal{A}(\mathcal{C})$ be the minimal field over \mathcal{C} . Show that $\mathcal{A}(\mathcal{C})$ consists of sets of the form

$$\bigcup_{i=1}^m \cap_{j=1}^{n_i} A_{ij},$$

where for each pair (i, j) either $A_{ij} \in \mathcal{C}$ or $A_{ij}^c \in \mathcal{C}$, and where the *m* sets $\{B_i := \bigcap_{j=1}^{n_i} A_{ij}, 1 \leq i \leq m\}$, are disjoint. Thus, we can represent explicitly the sets in $\mathcal{A}(\mathcal{C})$, however it turns out that, we cannot do the same for the σ -field over \mathcal{C} .

- (B) Now let's further assume that C is a π system. Show that if P_1 , P_2 are two probability measures which agree on C, then P_1 , P_2 must also agree on A(C). Hint: Use part(A) and the inclusion-exclusion principle.
- (C) Find two probability measures P_1 , P_2 on some set Ω that agree on a collection of subsets \mathcal{C} , but not on $\mathcal{A}(\mathcal{C})$. Obviously (from the previous part) \mathcal{C} cannot be a π -system. Hint: It's enough to have $\mathcal{C} = \{A, B\}$ with just two elements, on an outcome space Ω with just three points.