Sta 205 : Home Work \#4

Due : February 11, 2009

1. Expectation.

(a) Consider the triangle with vertices $(-1,0),(1,0),(0,1)$ and suppose $\left(X_{1}, X_{2}\right)$ is a random vector uniformly distributed with in this triangle. Compute $\mathrm{E}\left(X_{1}+X_{2}\right)$.
(b) Let $((0,1], \mathcal{B}((0,1]), \lambda)$ be a probability space (λ denotes Lebesgue measure and $\mathcal{B}(\cdot)$ the Borel sets). Let X be a random variable defined on the probability space described above, with $X(\omega):=1_{\mathbb{Q}}$ equal to one on the rationals and zero otherwise. What is $\mathrm{E}(X)$? Prove it. Note the Riemann integral would be different...
(c) Suppose $X \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$. Show that

$$
\int_{|X|>n} X d \mathrm{P} \rightarrow 0
$$

as n tends to ∞.
(d) Let $\left\{A_{n}\right\}$ denote a sequence of events such that $\mathrm{P}\left(A_{n}\right) \rightarrow 0$ and let $X \in L_{1}$. Show that

$$
\int_{A_{n}} X d \mathrm{P} \rightarrow 0
$$

(e) Let $X \in L_{1}$, and let A be an event. Show that

$$
\int_{A}|X| d \mathrm{P}=0 \text { iff } \mathrm{P}(A \cap[|X|>0])=0
$$

(f) Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and $A_{n} \in \mathcal{F}, n \in \mathbb{N}$. Define a distance measure $d: \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}_{+}$by $d\left(A_{n}, A_{m}\right) \equiv \mathrm{P}\left(A_{n} \Delta A_{m}\right)$, where " Δ " denotes the symmetric difference, $A \Delta B \equiv(A \backslash B) \cup$ $(B \backslash A)$. Show that, if $\left\{A_{n}\right\} \subset \mathcal{F}, A \in \mathcal{F}$ satisfy $d\left(A_{n}, A\right) \rightarrow 0$, then

$$
\int_{A_{n}} X d \mathrm{P} \rightarrow \int_{A} X d \mathrm{P}
$$

for every $X \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$.

2. Convergence Theorems.

(a) Let $X \geq 0$ be a non-negative random variable and define a sequence of real numbers by:

$$
S_{n} \equiv \sum_{k=0}^{\infty} \frac{k}{2^{n}} \mathrm{P}\left(\frac{k}{2^{n}}<X \leq \frac{k+1}{2^{n}}\right) \quad n \in \mathbb{N}
$$

What is $\lim _{n \rightarrow \infty} S_{n}$? Justify your answer.
(b) Define a sequence of random variables on the probability space $(\Omega, \mathcal{F}, \mathrm{P})=((0,1], \mathcal{B}((0,1]), \lambda)$ by

$$
X_{n} \equiv \frac{n}{\log n} \mathbf{1}_{\left(0, \frac{1}{n}\right)} \quad n \in \mathbb{N}
$$

Show that $X_{n} \rightarrow 0$ almost surely, and $\mathrm{E}\left(X_{n}\right) \rightarrow 0$. Also show that the dominated convergence theorem does not apply to this example. Why?
(c) Suppose $\left\{Y_{n}\right\}$ be a sequence of random variables such that

$$
\mathrm{P}\left(Y_{n}= \pm n^{3}\right)=\frac{1}{2 n^{2}}, \quad \mathrm{P}\left(Y_{n}=0\right)=1-\frac{1}{n^{2}}
$$

Show using the Borel-Cantelli lemma that $Y_{n} \rightarrow 0$ almost surely. Compute $\lim _{n \rightarrow \infty} \mathrm{E}\left(Y_{n}\right)$. It is 0 ? Is the Lebesgue Dominated convergence theorem applicable? Why or why not?
(d) Let $\left\{X_{n}\right\}, X$ be random variables, and $0 \leq X_{n} \rightarrow X$. If $\sup _{n} \mathrm{E}\left(X_{n}\right) \leq$ $K<\infty$, then show that $\mathrm{E}(X) \leq K$ and $X \in L_{1}$.

3. Potpourri.

(a) Let $\left\{X_{n}\right\}$ be a sequence of Bernoulli random variables with

$$
\mathrm{P}\left(X_{n}=1\right)=p_{n}=1-\mathrm{P}\left(X_{n}=0\right)
$$

Show that $\sum_{n=1}^{\infty} p_{n}<\infty$ implies $\sum_{n=1}^{\infty} \mathrm{E}\left(X_{n}\right)<\infty$ and hence conclude that $X_{n} \rightarrow 0$ almost surely.
(b) Let $\left\{X_{n}\right\}$ be a sequence of random variables. Show that

$$
\mathrm{E}\left(\sup _{1 \leq n \leq \infty}\left|X_{n}\right|\right)<\infty
$$

if and only if there exists a random variable $0 \leq Y \in L_{1}$ such that

$$
\mathrm{P}\left(\left|X_{n}\right| \leq Y\right)=1, \quad \forall n \geq 1
$$

