Sta 205 : Home Work #4

Due : February 11, 2009

1. Expectation.

- (a) Consider the triangle with vertices (-1, 0), (1, 0), (0, 1) and suppose (X_1, X_2) is a random vector uniformly distributed with in this triangle. Compute $\mathsf{E}(X_1 + X_2)$.
- (b) Let $((0, 1], \mathcal{B}((0, 1]), \lambda)$ be a probability space (λ denotes Lebesgue measure and $\mathcal{B}(\cdot)$ the Borel sets). Let X be a random variable defined on the probability space described above, with $X(\omega) := 1_{\mathbb{Q}}$ equal to one on the rationals and zero otherwise. What is $\mathsf{E}(X)$? Prove it. Note the Riemann integral would be different...
- (c) Suppose $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$. Show that

$$\int_{|X|>n} Xd\mathsf{P} \to 0$$

as n tends to ∞ .

(d) Let $\{A_n\}$ denote a sequence of events such that $\mathsf{P}(A_n) \to 0$ and let $X \in L_1$. Show that

$$\int_{A_n} X d\mathsf{P} \to 0$$

(e) Let $X \in L_1$, and let A be an event. Show that

$$\int_{A} |X| d\mathsf{P} = 0 \text{ iff } \mathsf{P}(A \cap [|X| > 0]) = 0$$

(f) Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space and $A_n \in \mathcal{F}$, $n \in \mathbb{N}$. Define a distance measure $d : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}_+$ by $d(A_n, A_m) \equiv \mathsf{P}(A_n \Delta A_m)$, where " Δ " denotes the symmetric difference, $A\Delta B \equiv (A \setminus B) \cup$ $(B \setminus A)$. Show that, if $\{A_n\} \subset \mathcal{F}$, $A \in \mathcal{F}$ satisfy $d(A_n, A) \to 0$, then

$$\int_{A_n} X d\mathsf{P} \to \int_A X d\mathsf{P}$$

for every $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$.

2. Convergence Theorems.

(a) Let $X \ge 0$ be a non-negative random variable and define a sequence of real numbers by:

$$S_n \equiv \sum_{k=0}^{\infty} \frac{k}{2^n} \mathsf{P}\left(\frac{k}{2^n} < X \le \frac{k+1}{2^n}\right) \qquad n \in \mathbb{N}.$$

What is $\lim_{n\to\infty} S_n$? Justify your answer.

(b) Define a sequence of random variables on the probability space $(\Omega, \mathcal{F}, \mathsf{P}) = ((0, 1], \mathcal{B}((0, 1]), \lambda)$ by

$$X_n \equiv \frac{n}{\log n} \mathbf{1}_{(0,\frac{1}{n})} \qquad n \in \mathbb{N}$$

Show that $X_n \to 0$ almost surely, and $\mathsf{E}(X_n) \to 0$. Also show that the dominated convergence theorem does not apply to this example. Why?

(c) Suppose $\{Y_n\}$ be a sequence of random variables such that

$$\mathsf{P}(Y_n = \pm n^3) = \frac{1}{2n^2}, \qquad \mathsf{P}(Y_n = 0) = 1 - \frac{1}{n^2}$$

Show using the Borel-Cantelli lemma that $Y_n \to 0$ almost surely. Compute $\lim_{n\to\infty} \mathsf{E}(Y_n)$. It is 0? Is the Lebesgue Dominated convergence theorem applicable? Why or why not?

(d) Let $\{X_n\}, X$ be random variables, and $0 \le X_n \to X$. If $\sup_n \mathsf{E}(X_n) \le K < \infty$, then show that $\mathsf{E}(X) \le K$ and $X \in L_1$.

3. Potpourri.

(a) Let $\{X_n\}$ be a sequence of Bernoulli random variables with

$$\mathsf{P}(X_n = 1) = p_n = 1 - \mathsf{P}(X_n = 0)$$

Show that $\sum_{n=1}^{\infty} p_n < \infty$ implies $\sum_{n=1}^{\infty} \mathsf{E}(X_n) < \infty$ and hence conclude that $X_n \to 0$ almost surely.

(b) Let $\{X_n\}$ be a sequence of random variables. Show that

$$\mathsf{E}\left(\sup_{1\le n\le\infty}|X_n|\right)<\infty$$

if and only if there exists a random variable $0 \leq Y \in L_1$ such that

$$\mathsf{P}(|X_n| \le Y) = 1, \qquad \forall n \ge 1$$