Sta 205 : Homework #5

Due : February 18, 2009

1. Indepedence.

(a) Let $\{B_i\}$, be independent events. For $N \in \mathbb{N}$ show that

$$\mathsf{P}\left(\bigcup_{i=1}^{N} B_{i}\right) = 1 - \prod_{i=1}^{N} [1 - \mathsf{P}(B_{i})]$$

(b) If $\{A_n, n \in \mathbb{N}\}$ is a sequence of events such that

$$\mathsf{P}(A_n \cap A_m) = \mathsf{P}(A_n)\mathsf{P}(A_m) \ \forall n, m \in \mathbb{N}, \ n \neq m,$$

does it follow that the events $\{A_n\}$ are independent? Give a proof or counter-example.

- (c) Let X be a random variable. Show that X is independent of itself if and only if there is some constant $c \in \mathbb{R}$ for which $\mathsf{P}[X = c] = 1$. Let f be a Borel measurable function, and X a random variable whose distribution is *not* concentrated at a single point. Can f(X) and X be independent? Explain your answer.
- (d) Show that if the event A is independent of the π -system \mathcal{P} and $A \in \sigma(\mathcal{P})$, then $\mathsf{P}(A)$ is either 0 or 1.
- (e) Give a simple example to show that two random variables on the same space (Ω, \mathcal{F}) may be independent according to one probability measure P_1 but dependent with respect to another P_2 .

2. Borel Cantelli.

(a) Fix any number p > 0 and let $\{X_n\}$ be a sequence of Bernoulli random variables with

$$\mathsf{P}(X_n = 1) = n^{-p}$$
 $\mathsf{P}(X_n = 0) = 1 - n^{-p}$.

For p = 2 show that the partial sum

$$S_n := \sum_{k=1}^n X_k$$

converges almost-surely, whether or not the $\{X_n\}$ are independent. If the $\{X_n\}$ are independent, with p = 1, does S_n converge? Why or why not?

(b) Dane draws independent random variables X_n from the uniform distribution on the unit interval (0, 1]. Each time he observes a "new record," a random variable X_n larger than any of the previous observations $\{X_k : k < n\}$, he shouts "Whoo hoo!" Show that the probability of a Whoo Hoo shout on the n^{th} draw is 1/n. Prove that Dane will say Whoo Hoo infinitely-many times. Do you need to assume that the events $A_n := \{$ Whoo Hoo on n^{th} draw $\}$ are independent? (c) Show that the probability of convergence of any sequence of independent random variables is either 0 or 1. Also show that

$$\mathsf{P}[X_n \text{ converges}] = 0$$

if the independent random variables are identically distributed with a non-trivial (i.e., not almost-surely constant) distribution.

(d) Use the Borel-Cantelli lemma to prove that for any sequence of real-valued random variables $\{X_n\}$, there exists constants $c_n \to \infty$ such that

$$\mathsf{P}\left(\lim_{n \to \infty} \frac{X_n}{c_n} = 0\right) = 1.$$

Find the numbers c_n explicitly in terms of the CDF functions

$$F_n(x) = \mathsf{P}[X_n \le x], \quad x \in \mathbb{R}.$$

Find a suitable sequence $\{c_n\}$ explicitly for an i.i.d. sequence $\{X_n\} \stackrel{\text{iid}}{\sim} \mathsf{No}(0,1)$ of standard Gaussian random variables to ensure that $X_n/c_n \to 0$ almost surely.

3. Mixed Bag.

- (a) Suppose $\{A_n, n \in \mathbb{N}\}\$ are independent events satisfying $\mathsf{P}(A_n) < 1$, $\forall n \in \mathbb{N}$. Show that $\mathsf{P}(\bigcup_{n=1}^{\infty} A_n) = 1$ if and only if $\mathsf{P}(A_n \text{ i.o.}) = 1$. Give an example to show that the condition $\mathsf{P}(A_n) < 1$ cannot be dropped.
- (b) Suppose $\{A_n\}$ is a sequence of events. If $\mathsf{P}(A_n) \to 1$ as $n \to \infty$, prove that there exists a subsequence $\{n_k\}$ tending to infinity such that $\mathsf{P}(\cap_k A_{n_k}) > 0$.
- (c) Let A_n be a sequence of events. If there exists $\epsilon > 0$ such that $\mathsf{P}(A_n) \ge \epsilon$ for all $n \in \mathbb{N}$, does it follow that there exists a subsequence $\{n_k\}$ tending to infinity such that $\mathsf{P}(\cap_k A_{n_k}) > 0$? Why or why not?
- (d) Let $\{X_n\}$ be i.i.d. random variables, with tail σ -field

$$\mathcal{T} \equiv \bigcap_{n} \mathcal{F}_{\geq n}, \qquad \mathcal{F}_{\geq n} \equiv \sigma\{X_m : m \ge n\}$$

Fix some B > 0. Is the event

$$E_B = \{ |X_n| \le B \text{ for infinitely-many } n \}$$
$$= \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{ \omega : |X_n(\omega)| \le B \}$$

in \mathcal{T} ? Prove or disprove it. Express its probability, $\mathsf{P}[E_B]$, in terms of the random variables' common CDF, $F(x) \equiv \mathsf{P}[X_n \leq x]$. Be careful.