Sta 205 : Homework \#5

Due : February 18, 2009

1. Indepedence.

(a) Let $\left\{B_{i}\right\}$, be independent events. For $N \in \mathbb{N}$ show that

$$
\mathrm{P}\left(\bigcup_{i=1}^{N} B_{i}\right)=1-\prod_{i=1}^{N}\left[1-\mathrm{P}\left(B_{i}\right)\right]
$$

(b) If $\left\{A_{n}, n \in \mathbb{N}\right\}$ is a sequence of events such that

$$
\mathrm{P}\left(A_{n} \cap A_{m}\right)=\mathrm{P}\left(A_{n}\right) \mathrm{P}\left(A_{m}\right) \forall n, m \in \mathbb{N}, n \neq m,
$$

does it follow that the events $\left\{A_{n}\right\}$ are independent? Give a proof or counter-example.
(c) Let X be a random variable. Show that X is independent of itself if and only if there is some constant $c \in \mathbb{R}$ for which $\mathrm{P}[X=c]=1$. Let f be a Borel measurable function, and X a random variable whose distribution is not concentrated at a single point. Can $f(X)$ and X be independent? Explain your answer.
(d) Show that if the event A is independent of the π-system \mathcal{P} and $A \in \sigma(\mathcal{P})$, then $\mathrm{P}(A)$ is either 0 or 1 .
(e) Give a simple example to show that two random variables on the same space (Ω, \mathcal{F}) may be independent according to one probability measure P_{1} but dependent with respect to another P_{2}.

2. Borel Cantelli.

(a) Fix any number $p>0$ and let $\left\{X_{n}\right\}$ be a sequence of Bernoulli random variables with

$$
\mathrm{P}\left(X_{n}=1\right)=n^{-p} \quad \mathrm{P}\left(X_{n}=0\right)=1-n^{-p} .
$$

For $p=2$ show that the partial sum

$$
S_{n}:=\sum_{k=1}^{n} X_{k}
$$

converges almost-surely, whether or not the $\left\{X_{n}\right\}$ are independent. If the $\left\{X_{n}\right\}$ are independent, with $p=1$, does S_{n} converge? Why or why not?
(b) Dane draws independent random variables X_{n} from the uniform distribution on the unit interval $(0,1]$. Each time he observes a "new record," a random variable X_{n} larger than any of the previous observations $\left\{X_{k}: k<n\right\}$, he shouts "Whoo hoo!" Show that the probability of a Whoo Hoo shout on the $n^{\text {th }}$ draw is $1 / n$. Prove that Dane will say Whoo Hoo infinitely-many times. Do you need to assume that the events $A_{n}:=\left\{\right.$ Whoo Hoo on $n^{\text {th }}$ draw $\}$ are independent?
(c) Show that the probability of convergence of any sequence of independent random variables is either 0 or 1 . Also show that

$$
\mathrm{P}\left[X_{n} \text { converges }\right]=0
$$

if the independent random variables are identically distributed with a non-trivial (i.e., not almost-surely constant) distribution.
(d) Use the Borel-Cantelli lemma to prove that for any sequence of real-valued random variables $\left\{X_{n}\right\}$, there exists constants $c_{n} \rightarrow \infty$ such that

$$
\mathrm{P}\left(\lim _{n \rightarrow \infty} \frac{X_{n}}{c_{n}}=0\right)=1 .
$$

Find the numbers c_{n} explicitly in terms of the CDF functions

$$
F_{n}(x)=\mathrm{P}\left[X_{n} \leq x\right], \quad x \in \mathbb{R} .
$$

Find a suitable sequence $\left\{c_{n}\right\}$ explicitly for an i.i.d. sequence $\left\{X_{n}\right\} \stackrel{\mathrm{iid}}{\sim} \operatorname{No}(0,1)$ of standard Gaussian random variables to ensure that $X_{n} / c_{n} \rightarrow 0$ almost surely.

3. Mixed Bag.

(a) Suppose $\left\{A_{n}, n \in \mathbb{N}\right\}$ are independent events satisfying $\mathrm{P}\left(A_{n}\right)<1, \forall n \in \mathbb{N}$. Show that $\mathrm{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=1$ if and only if $\mathrm{P}\left(A_{n}\right.$ i.o. $)=1$. Give an example to show that the condition $\mathrm{P}\left(A_{n}\right)<1$ cannot be dropped.
(b) Suppose $\left\{A_{n}\right\}$ is a sequence of events. If $\mathrm{P}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$, prove that there exists a subsequence $\left\{n_{k}\right\}$ tending to infinity such that $\mathrm{P}\left(\cap_{k} A_{n_{k}}\right)>0$.
(c) Let A_{n} be a sequence of events. If there exists $\epsilon>0$ such that $\mathrm{P}\left(A_{n}\right) \geq \epsilon$ for all $n \in \mathbb{N}$, does it follow that there exists a subsequence $\left\{n_{k}\right\}$ tending to infinity such that $\mathrm{P}\left(\cap_{k} A_{n_{k}}\right)>0$? Why or why not?
(d) Let $\left\{X_{n}\right\}$ be i.i.d. random variables, with tail σ-field

$$
\mathcal{T} \equiv \bigcap_{n} \mathcal{F}_{\geq n}, \quad \mathcal{F}_{\geq n} \equiv \sigma\left\{X_{m}: m \geq n\right\}
$$

Fix some $B>0$. Is the event

$$
\begin{aligned}
E_{B} & =\left\{\left|X_{n}\right| \leq B \text { for infinitely-many } n\right\} \\
& =\cap_{m=1}^{\infty} \cup_{n=m}^{\infty}\left\{\omega:\left|X_{n}(\omega)\right| \leq B\right\}
\end{aligned}
$$

in \mathcal{T} ? Prove or disprove it. Express its probability, $\mathrm{P}\left[E_{B}\right]$, in terms of the random variables' common CDF, $F(x) \equiv \mathrm{P}\left[X_{n} \leq x\right]$. Be careful.

