Sta 205 : Home Work #6

Due: 2009 Mar 04

1. Fubini and Tonelli.

(a) Let X be a positive random variable (i.e, $X \ge 0$ a.s) on $(\Omega, \mathcal{F}, \mathsf{P})$. Show that

$$\mathsf{E}(X) = \int_0^\infty \mathsf{P}(X > t) \ dt$$

(note X need not have an absolutely-continuous distribution). Also verify that for any $\alpha > 0$

$$\mathsf{E}(X^{\alpha}) = \int_0^\infty \alpha t^{\alpha - 1} \mathsf{P}(X > t) dt$$

(b) Define probability spaces $(\Omega_i, \mathcal{B}_i, \mu_i)$, for i = 1, 2 as follows. Let each $\Omega_i := (0, 1]$ be the unit interval, with σ -algebras

$$\mathcal{B}_1 =$$
 Borel sets of $(0,1]$ $\mathcal{B}_2 =$ All subsets of $(0,1]$

and let μ_1 be Lebesgue measure and μ_2 counting measure—so that $\mu_1(A)$ is the length of any set $A \in \mathcal{B}_1$ and $\mu_2(A)$ is the number of points in $A \in \mathcal{B}_2$. Define

$$f(x,y) := \mathbf{1}_{x=y}(x,y)$$

Set

$$I_1 := \int_{\Omega_1} \left[\int_{\Omega_2} f(x, y) \mu_2(dy) \right] \mu_1(dx) \qquad I_2 := \int_{\Omega_2} \left[\int_{\Omega_1} f(x, y) \mu_1(dx) \right] \mu_2(dy)$$

Compute I_1 and I_2 . Is $I_1 = I_2$? Are the measures μ_1 and μ_2 σ -finite? Why doesn't Fubini's theorem hold here?

(c) This problem is a probabilistic version of the familiar integration-by-parts formula from calculus. Suppose F and G are two distribution functions with no common points of discontinuity in an interval (a, b]. Show that

$$\int_{(a,b]} G(x)F(dx) = F(b)G(b) - F(a)G(a) - \int_{(a,b]} F(x)G(dx)$$

Show that the above formula need not hold true if F and G have common discontinuities.

2. Uniform Integrability (UI)

A family $\{X_{\alpha}\}$ of random variables is called *uniformly integrable* (or UI) if

$$\mathsf{E}\Big[|X_{\alpha}|\,\mathbf{1}_{\{|X_{\alpha}|>t\}}\Big]\to 0$$

as $t \to \infty$, uniformly in α .

- (a) Let $\{X_n\}$ be a sequence of iid, L_1 random variables. Set $S_n \equiv \sum_{i=1}^n X_i$. Show that the sequence of random variables $\{Y_n\}$ defined by $Y_n \equiv S_n/n$ is UI.
- (b) Let $X_n \sim No(0, \sigma_n^2)$. Find a simple condition on $\{\sigma_n^2\}$ such that $\{X_n\}$ is UI.
- (c) If $\{X_n\}$ and $\{Y_n\}$ are UI, show that so is $\{X_n + Y_n\}$.
- (d) Suppose $\{X_n, n \ge 1\}$ is an **arbitrary** sequence of non-negative random variables, and set $M_n \equiv \bigvee_{i=1}^n X_i$. If $\{X_n\}$ is UI, show that $\mathsf{E}(M_n)/n \to 0$.
- (e) Let $\phi(x)$ be a function which grows faster than x at infinity, i.e., $\phi(x)/x \nearrow \infty$ (monotonically) as $x \to \infty$. Let \mathcal{C} be a collection of random variables such that, for some fixed $B < \infty$ and all $Z \in \mathcal{C}$,

$$\mathsf{E}\Big(\phi(|Z|)\Big) \le B.$$

Show that C is UI. What is the implication for $\phi(x) = x^2$?

3. Convergence Theorems Revisited.

(a) Let X be a non-negative real valued random variable. Show that:

i. $\lim_{n\to\infty} n\mathsf{E}(\frac{1}{X}\mathbf{1}_{[X>n]}) = 0.$

ii.
$$\lim_{n \to \infty} n^{-1} \mathsf{E}(\frac{1}{X} \mathbf{1}_{[X > n^{-1}]}) = 0.$$

(b) Suppose $\{p_k, k \ge 0\}$ is a probability mass function on $\{0, 1, ...\}$ and define the generating function

$$P(z) = \sum_{k=0}^{\infty} p_k z^k \qquad 0 \le z \le 1$$

Prove using Dominated Convergence theorem that

$$\frac{d}{dz}P(z) = \sum_{k=1}^{\infty} p_k k z^{k-1} \qquad 0 \le z \le 1.$$

Note you may wish to consider the cases z < 1 and z = 1 separately. What is P'(1)? P'(0)? Can you express the variance of a random variable X, if it exists, in terms of P(z) and its derivatives? How about $p_k = \mathsf{P}[X = k]$?