Sta 205 : Home Work #7

Due : March 16, 2009

- I. **True or False**? Answer whether each of the following statements is true or false. If your answer is true, answer why it is true. If it is false, show why— perhaps by giving a simple counter example.
 - (A) If $\{X_n, n \in \mathbb{N}\}$ is a uniformly integrable (U.I.) collection of random variables, then $X_n \in L_1$ for each n.
 - (B) Define a sequence $\{X_n\}$ of random variables on the unit interval with Lebesgue measure, (Ω, \mathcal{F}, P) with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}$, and $\mathsf{P} = \lambda$, by $X_n \equiv \sqrt{n} \mathbb{1}_{(0, \frac{1}{n}]}$. Then $\{X_n\}$ is UI.
 - (C) Let $\{X_n\}$ be a sequence of random variables for which $e^{|X_n|}$ is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}e^{|X_n|} \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.
 - (D) Let $\{X_n\}$ be a sequence of random variables that is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}|X_n| \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.

II. Characteristic Functions.

(A) Let X be a random variable, and define

$$\phi_X(\omega) \equiv \mathbb{E}(e^{i\omega X}), \qquad \omega \in \mathbb{R}$$

Show that $\phi_X(\omega)$ is uniformly continuous in \mathbb{R} .

(B) Find the characteristic functions of the following random variables :

i.
$$X \sim Ge(p)^1$$

ii. $Y \sim Ex(\lambda)^2$
iii. $Z = X/n$, $X \sim Ge(\lambda/n)$

Find the limit of $\phi_Z(\omega)$ from part (iii) above as $n \to \infty$. Recognize it?

III. Infinite Divisibility.

The distribution of a random variable X is called *infinitely divisible* if, for every $n \in \mathbb{N}$, there exist n i.i.d random variables $\{Y_i\}$ such that X has the same distribution as $\sum_{i=1}^{n} Y_i$. Use characteristic functions to show that if $X \sim \text{Po}(\lambda)$, then X is infinite divisible. (Hint: Recall that if random variables $\{Y_i\}$ are independent then $\phi_{\Sigma Y_i}(\omega) = \prod \phi_{Y_i}(\omega)$ for all $\omega \in \mathbb{R}$)

¹Starting at x = 0— with p.m.f. $f(x \mid p) = p q^x$, x = 0, 1, 2, ...²Rate parametrization— with p.d.f. $f(y) = \lambda e^{-\lambda y}$, y > 0.