Sta 205 : Home Work \#9

Due : April 1, 2009

I. Convergence Concepts: a.s. and i.p.

(A) Let $\left\{X_{n}\right\}$ be a monotonically increasing sequence of RVs such that $X_{n} \rightarrow X$ in probability (i.p). Show that $X_{n} \rightarrow X$ almost surely (a.s).
(B) Let $\left\{X_{n}\right\}$ be any sequence of RVs. Show that $X_{n} \rightarrow X$ a.s. if and only if

$$
\sup _{k \geq n}\left|X_{k}-X\right| \rightarrow 0 \quad \text { i.p. }
$$

(C) Let $\left\{X_{n}\right\}$ be an arbitrary sequence of RVs and set $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that $X_{n} \rightarrow 0$ a.s. implies that $S_{n} / n \rightarrow 0$ a.s.
(D) Let $\left\{X_{n}\right\},\left\{Y_{n}\right\}$ be two sequences of RVs such that $0 \leq X_{n} \leq Y_{n}$ and $Y_{n} \rightarrow 0$ i.p. Show that $X_{n} \rightarrow 0$ i.p.
(E) Suppose $\left\{X_{n}\right\}$ are identically distributed with finite variance. Fix $\epsilon>0$. Show that $n \mathrm{P}\left[\left|X_{1}\right| \geq \epsilon \sqrt{n}\right] \rightarrow 0$. Also show that $\frac{\bigvee_{i=1}^{n}\left|X_{i}\right|}{\sqrt{n}} \rightarrow 0$ i.p., where " $\mathrm{V} a_{i}$ " denotes the maximum of $\left\{a_{i}\right\}$.
(F) For random variables X, Y define

$$
\rho(X, Y) \equiv \mathrm{E} \frac{|X-Y|}{1+|X-Y|}
$$

The function ρ is a metric (you do not have to prove that), i.e., it's non-negative, symmetric, satisfies the triangle inequality, and vanishes if and only if $X=Y$. Show that ρ "metrizes" convergence in probability: i.e., $X_{n} \rightarrow X$ i.p., if and only if $\rho\left(X_{n}, X\right) \rightarrow 0$.

II. L_{p} Convergence

(A) Let $\left\{X_{n}\right\}$ be a sequence of positive RVs such that $X_{n} \rightarrow X$ i.p. and $\mathrm{E}\left(X_{n}\right) \rightarrow$ $\mathrm{E}(X)$. Show that $X_{n} \rightarrow X$ in L_{1}.
(B) For any two events A and B, define the distance $d(A, B)$ as

$$
d(A, B) \equiv \mathrm{P}(A \Delta B)
$$

where (as usual) $A \Delta B \equiv\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)$ denotes the symmetric difference. Prove that for any sequence of events $\left\{A_{n}\right\}, d\left(A_{n}, A\right) \rightarrow 0$ if and only if the indicator functions satisfy $\mathbf{1}_{A_{n}} \rightarrow \mathbf{1}_{A}$ in L_{2}.
(C) Give an example of a sequence of RVs $\left\{X_{n}\right\} \subset L_{2}$ which converge in L_{1} but do not converge in L_{2}.
(D) Let $(\Omega, \mathcal{F}, \mathrm{P})=((0,1], \mathcal{B}(0,1], \lambda)$ be the unit interval with Lebesgue measure, and define $X_{n}(\omega) \equiv \omega^{n}, \omega \in \Omega$. For what $p \in[1, \infty]$, does the sequence $\left\{X_{n}\right\}$ converge in L_{p} ? If it does converge for some $p \in[1, \infty]$, find the limiting random variable (it might depend on p). Explain your answer.

III. More on L_{p}

(A) For a random variable $X, 1<p<q<\infty$, show that

$$
0 \leq\|X\|_{1} \leq\|X\|_{p} \leq\|X\|_{q} \leq\|X\|_{\infty}
$$

(B) For $1<p<q<\infty$, show that

$$
L_{\infty} \subset L_{q} \subset L_{p} \subset L_{1}
$$

where L_{p} denotes the space of all RVs X with $\|X\|_{q}<\infty$. Hint: Jensen's inequality might be needed here.
(C) Show the following form of Hölder's inequality : For RVs X, Y

$$
\mathrm{E}(|X Y|) \leq\|X\|_{1}\|Y\|_{\infty}
$$

(D) Show the following form of Minkowski's inequality: For RVs X, Y

$$
\|X+Y\|_{\infty} \leq\|X\|_{\infty}+\|Y\|_{\infty}
$$

(E) If $X \in L_{3}(\Omega, \mathcal{F}, \mathrm{P})$ and $Y \in L_{6}(\Omega, \mathcal{F}, \mathrm{P})$, for what $r \in(0, \infty)$ is $X \cdot Y \in L_{r}$? Why? Give a bound for $\|X \cdot Y\|_{r}$.

