Sta 205 : Homework #11

Due : April 15, 2009

I. Convergence In Distribution

- (A) For events $\{A_n\}$ and A in some probability space $(\Omega, \mathcal{F}, \mathsf{P})$, define Bernoulli random variables by $X_n \equiv 1_{A_n}$ and $X \equiv 1_A$. As $n \to \infty$,
 - i. Under what conditions on $\{A_n\}$ and A will $X_n \Rightarrow X$?
 - ii. Under what conditions on $\{A_n\}$ and A will $X_n \to X$ in L_1 ?
 - iii. Under what conditions on $\{A_n\}$ and A will $X_n \to X$ in L_{∞} ?
- (B) Let $\{X_n\}$ be a sequence of RV's with distributions given by

$$P\left[X_n = 1 - \frac{1}{n}\right] = P\left[X_n = 1 + \frac{1}{n}\right] = \frac{1}{2}$$

Show that X_n converges in distribution, and find the limiting distribution.

(C) Define probability density functions by

$$f_n(x) = \begin{cases} 1 - \cos(2n\pi x) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

and let $\mu_n(dx) = f_n(x) dx$ be the corresponding distributions— so $\mu_n(A) = \mathsf{P}[X_n \in A]$, if X_n has p.d.f. $f_n(x)$. Show that μ_n converges weakly and find the weak limit. Also show that the density functions f_n do not converge pointwise.

(D) Let $Y_n \sim \mathsf{No}(\mu_n, \sigma_n^2)$ and $Y \sim \mathsf{No}(\mu, \sigma^2)$ be normally-distributed random variables. Show that $Y_n \Rightarrow Y$ if and only if $\mu_n \to \mu$ and $\sigma_n^2 \to \sigma^2$.

II. Central Limit Theorem (CLT)

(A) Fix a > 1 and let X_n be an i.i.d. sequence with density function

$$f(x) = a|x|^{-1-2a}, \quad |x| \ge 1; \qquad f(x) = 0, \quad |x| < 1.$$

Compute $\mathsf{E}[X_1]$ and $\mathsf{E}[X_1^2]$. Set $S_n \equiv \sum_{i=1}^n X_i$. For what number(s) $p \in \mathbb{R}$ does S_n/n^p have a non-trivial limiting distribution as $n \to \infty$? What is that distribution? Extra credit: What happens for 0 < a < 1? For a = 1?

(B) **Delta method.** Let $\{X_j\} \stackrel{\text{iid}}{\sim} \text{Bi}(1, \theta)$ be independent Bernoulli random variables with partial sum $S_n \equiv \sum_{j \leq n} X_j \sim \text{Bi}(n, \theta)$ and sample mean $\overline{X}_n \equiv S_n/n$, for some $\theta \in (0, 1)$, and let $\phi \in C^3(0, 1)$ be a real-valued function on the unit interval with three continuous derivatives at every point. For large *n* use Taylor's theorem to find the approximate mean and variance of $\phi(\overline{X}_n)$, correct to order 1/n. Show your work; keep track of the remainder terms!