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For each constant c > 0, any non-negative integrable random variable Y satisfies the inequalities

0 ≤ Y ≤ c1{Y ≥c} for every ω ∈ Ω, so

EY ≤ E{c1{Y ≥c}} = cP[Y ≥ c]

P[Y ≥ c] ≤ EY/c, (1)

a result known as Markov’s Inequality. A special case of this arises for Y = |X − µ|2, for any
L2 random variable X with mean µ and variance σ2— by Markov’s inequality,

P
[

|X − µ| ≥ c
]

= P
[

|X − µ|2 ≥ c2
]

≤ E|X − µ|2/c2

= σ2/c2, (2)

the well-known Chebychev Inequality. The one-sided bound

P[X − µ ≥ c] ≤ σ2/c2 (3)

follows immediately, but one can do better— for any t,

P[X − µ ≥ c] = P[(X − µ + t) ≥ (c + t)]

≤
σ2 + t2

(c + t)2
,

and the optimal t = σ2/c (found by setting the derivative of the logarithm to zero) isn’t quite 0.
With the optimal t,

P[X − µ ≥ c] ≤
σ2

σ2 + c2
, (4)

a slight improvement on Equation (3).

The technique of applying Markov’s inequality with a free parameter (here t) and choosing it
optimally can be very powerful; one of the best applications of this idea leads to what are variously
called the Chernoff Bounds or (UNC’s own Wassily) Hoeffding’s Inequality. Here’s a sketch of how
they work.
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First, an aside on Kullback-Leibler Divergence. Let F and G be two probability distributions on
the same set X with F ≪ G; then the “Kullback-Leibler divergence from F to G” is defined by

K[F : G] := EF

[

log
F (dx)

G(dx)

]

=

∫

X
log

F (dx)

G(dx)
F (dx),

where as usual F (dx)/G(dx) denotes the Radon-Nikodym derivative. The K-L divergence may
always be computed using densities with respect to any dominating measure m(dx) as

=

∫

X
log

f(x)

g(x)
f(x)m(dx),

a quantity that depends only on the distributions and not on the choice of dominating measure
m(dx). The quantity K[F : G] is always non-negative, vanishes only if F and G coincide, and is
easy to compute, so it is often used as a measure of discrepancy between F and G, even though it
is not a true “distance” meaasure because it is not symmetric in F and G, and does not satisfy the
triangle inequality. The topology (i.e. measure of “closeness” and hence definition of convergence)
induced by K[Fθ0

: Fθ1
] on the parameter space Θ for a distributional family {Fθ} is the same as

the “information metric” topology generated by the Riemannian distance metric1 dI(·, ·) based on
the Fisher Information I; one can show that

K[Fθ0
: Fθ1

] ≍
1

2
dI(θ0, θ1)

2

as dI(θ0, θ1) → 0. The K-L divergence from one Bernoulli distribution to another is

K(p : q) := K[Bi(1, p) : Bi(1, q)]

= p log
p

q
+ (1 − p) log

1 − p

1 − q

= p log
p

q
+ p̄ log

p̄

q̄

where we denote p̄ ≡ 1 − p and q̄ ≡ 1 − q. This vanishes for q = p and, for 0 < q < p < 1, is

K(p : q) =

∫ p

q

{

p

x
−

1 − p

1 − x

}

dx =

∫ p

q

{

p − x

x(1 − x)

}

dx

≥ 4

∫ p

q
(p − x) dx = 2(p − q)2,

since x(1 − x) ≤ 1/4 for all x ∈ R.

1In d = 1 dimension, this is dI(θ0, θ1) :=
˛

˛

˛

R θ1

θ0

p

I(θ) dθ
˛

˛

˛
, where I(θ) denotes the Fisher information; in higher

dimensions it is dI(θ0, θ1) := infγ

R

1

0

p

γ̇′(s) I(θ) γ̇(s) ds, where the infimum is over all smooth paths γ : [0, 1] → Θ
with “velocity” γ̇(s) := dγ/ds connecting γ(0) = θ0 to γ(1) = θ1.
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Theorem 1 (Hoeffding). Let {Xi} be i.i.d. random variables taking values in the unit interval

[0, 1], with mean µ. Then for all c > 0 with p ≡ µ + c ≤ 1,

P[X̄n − µ ≥ c] ≤ e−nK(p:µ) ≤ e−2 n c2 .

Proof. Set Sn :=
∑

i≤n Xi and let t > 0. Then by Markov’s inequality applied to Y = etSn ,

P[X̄n − µ ≥ c] ≤ EetSne−nt(µ+c)

= [EetX1 ]ne−nt p

≤ [µ̄ + µet]ne−nt p since et X ≤ (1−X) + X et by convexity

= [µ̄e−t p + µet p̄]n

with µ̄ := 1 − µ. Using logarithms and derivatives again, one discovers that the minimum over all
t ≥ 0 is attained where et = p µ̄

p̄ µ , so [µ̄ + µet] = µ̄/p̄ and:

P[X̄n − µ ≥ c] ≤

[

µp µ̄p̄

pp p̄p̄

]n

= e−np log(p/µ)−np̄ log(p̄/µ̄) = e−nK(p:µ).

Applying the same result to (1 − Xj) and summing gives the two-sided bound

P
[

|X̄n − µ| ≥ c
]

≤ 2e−nK(p:µ) ≤ 2e−2 n c2. (5)

This is much stronger than (for example) Chebychev’s inequality

P
[

|X̄n − µ| ≥ c
]

≤
σ2

n c2

because it shrinks geometrically in n; by the Borel-Cantelli Lemma it leads immediately to a version
of the strong law of large numbers (SLLN)

P[X̄n → µ] = 1,

for example, while Chebychev can only get the weak LLN P
[

|X̄n − µ| > ǫ
]

→ 0. Of course,
Hoeffding’s inequality requires {Xj} to be bounded, while Chebychev doesn’t, but the bounds
don’t have to be zero and one. If, say, a ≤ Yi ≤ b with probability one, then apply Hoeffding’s
inequality to Xi := (Yi − a)/(b − a) to find:

P[Ȳn − µ ≥ c] = P

[

X̄n −
µ − a

b − a
≥

c

b − a

]

≤ e−2 n c2/(b−a)2 (6)

(with a similar two-sided version). The {Yi} don’t even have to be identically distributed— inde-
pendence and boundedness are enough. If they satisfy ai ≤ Yi ≤ bi for each i, then

P[Ȳn − µn ≥ c] ≤ e−2 n2 c2/
P

i≤n(bi−ai)
2

(7)

where µn = EŶn is the average mean 1
n

∑

i≤n E[Yi].

Hoeffding proved this improvement on Chebychev’s inequality (at UNC) in 1963. It is closely related
to the earlier Azuma’s inequality (1967), Chernoff bounds (1952), and Bernstein’s inequality
(1937). In modern probability theory the distribution measure for Yn is said to be concentrated

near µ, making this one of the first of the now popular “concentration inequalities.”
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