Markov, Chebychev and Hoeffding Inequalities

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

For each constant $c>0$, any non-negative integrable random variable Y satisfies the inequalities

$$
\begin{align*}
0 \leq Y & \leq c \mathbf{1}_{\{Y \geq c\}} \quad \text { for every } \omega \in \Omega, \text { so } \\
\mathrm{E} Y & \leq \mathrm{E}\left\{c \mathbf{1}_{\{Y \geq c\}}\right\}=c \mathrm{P}[Y \geq c] \\
\mathrm{P}[Y \geq c] & \leq \mathrm{E} Y / c, \tag{1}
\end{align*}
$$

a result known as Markov's Inequality. A special case of this arises for $Y=|X-\mu|^{2}$, for any L_{2} random variable X with mean μ and variance σ^{2} - by Markov's inequality,

$$
\begin{align*}
\mathrm{P}[|X-\mu| \geq c] & =\mathrm{P}\left[|X-\mu|^{2} \geq c^{2}\right] \\
& \leq \mathrm{E}|X-\mu|^{2} / c^{2} \\
& =\sigma^{2} / c^{2}, \tag{2}
\end{align*}
$$

the well-known Chebychev Inequality. The one-sided bound

$$
\begin{equation*}
\mathrm{P}[X-\mu \geq c] \leq \sigma^{2} / c^{2} \tag{3}
\end{equation*}
$$

follows immediately, but one can do better- for any t,

$$
\begin{aligned}
\mathrm{P}[X-\mu \geq c] & =\mathrm{P}[(X-\mu+t) \geq(c+t)] \\
& \leq \frac{\sigma^{2}+t^{2}}{(c+t)^{2}}
\end{aligned}
$$

and the optimal $t=\sigma^{2} / c$ (found by setting the derivative of the logarithm to zero) isn't quite 0 . With the optimal t,

$$
\begin{equation*}
\mathrm{P}[X-\mu \geq c] \leq \frac{\sigma^{2}}{\sigma^{2}+c^{2}} \tag{4}
\end{equation*}
$$

a slight improvement on Equation (3).
The technique of applying Markov's inequality with a free parameter (here t) and choosing it optimally can be very powerful; one of the best applications of this idea leads to what are variously called the Chernoff Bounds or (UNC's own Wassily) Hoeffding's Inequality. Here's a sketch of how they work.

First, an aside on Kullback-Leibler Divergence. Let F and G be two probability distributions on the same set \mathcal{X} with $F \ll G$; then the "Kullback-Leibler divergence from F to G " is defined by

$$
\mathcal{K}[F: G]:=\mathrm{E}_{F}\left[\log \frac{F(d x)}{G(d x)}\right]=\int_{\mathcal{X}} \log \frac{F(d x)}{G(d x)} F(d x),
$$

where as usual $F(d x) / G(d x)$ denotes the Radon-Nikodym derivative. The K-L divergence may always be computed using densities with respect to any dominating measure $m(d x)$ as

$$
=\int_{\mathcal{X}} \log \frac{f(x)}{g(x)} f(x) m(d x),
$$

a quantity that depends only on the distributions and not on the choice of dominating measure $m(d x)$. The quantity $\mathcal{K}[F: G]$ is always non-negative, vanishes only if F and G coincide, and is easy to compute, so it is often used as a measure of discrepancy between F and G, even though it is not a true "distance" meaasure because it is not symmetric in F and G, and does not satisfy the triangle inequality. The topology (i.e. measure of "closeness" and hence definition of convergence) induced by $\mathcal{K}\left[F_{\theta_{0}}: F_{\theta_{1}}\right]$ on the parameter space Θ for a distributional family $\left\{F_{\theta}\right\}$ is the same as the "information metric" topology generated by the Riemannian distance metric ${ }^{1} d_{I}(\cdot, \cdot)$ based on the Fisher Information I; one can show that

$$
\mathcal{K}\left[F_{\theta_{0}}: F_{\theta_{1}}\right] \asymp \frac{1}{2} d_{I}\left(\theta_{0}, \theta_{1}\right)^{2}
$$

as $d_{I}\left(\theta_{0}, \theta_{1}\right) \rightarrow 0$. The K-L divergence from one Bernoulli distribution to another is

$$
\begin{aligned}
K(p: q) & :=\mathcal{K}[\operatorname{Bi}(1, p): \operatorname{Bi}(1, q)] \\
& =p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \\
& =p \log \frac{p}{q}+\bar{p} \log \frac{\bar{p}}{\bar{q}}
\end{aligned}
$$

where we denote $\bar{p} \equiv 1-p$ and $\bar{q} \equiv 1-q$. This vanishes for $q=p$ and, for $0<q<p<1$, is

$$
\begin{aligned}
K(p: q) & =\int_{q}^{p}\left\{\frac{p}{x}-\frac{1-p}{1-x}\right\} d x=\int_{q}^{p}\left\{\frac{p-x}{x(1-x)}\right\} d x \\
& \geq 4 \int_{q}^{p}(p-x) d x=2(p-q)^{2},
\end{aligned}
$$

since $x(1-x) \leq 1 / 4$ for all $x \in \mathbb{R}$.

[^0]Theorem 1 (Hoeffding). Let $\left\{X_{i}\right\}$ be i.i.d. random variables taking values in the unit interval $[0,1]$, with mean μ. Then for all $c>0$ with $p \equiv \mu+c \leq 1$,

$$
P\left[\bar{X}_{n}-\mu \geq c\right] \leq e^{-n K(p: \mu)} \leq e^{-2 n c^{2}}
$$

Proof. Set $S_{n}:=\sum_{i \leq n} X_{i}$ and let $t>0$. Then by Markov's inequality applied to $Y=e^{t S_{n}}$,

$$
\begin{aligned}
\mathrm{P}\left[\bar{X}_{n}-\mu \geq c\right] & \leq \mathrm{E} e^{t S_{n}} e^{-n t(\mu+c)} \\
& =\left[\mathrm{E} e^{t X_{1}}\right]^{n} e^{-n t p} \\
& \leq\left[\bar{\mu}+\mu e^{t}\right]^{n} e^{-n t p} \quad \text { since } e^{t X} \leq(1-X)+X e^{t} \text { by convexity } \\
& =\left[\bar{\mu} e^{-t p}+\mu e^{t \bar{p}}\right]^{n}
\end{aligned}
$$

with $\bar{\mu}:=1-\mu$. Using logarithms and derivatives again, one discovers that the minimum over all $t \geq 0$ is attained where $e^{t}=\frac{p \bar{\mu}}{\bar{p} \mu}$, so $\left[\bar{\mu}+\mu e^{t}\right]=\bar{\mu} / \bar{p}$ and:

$$
\mathrm{P}\left[\bar{X}_{n}-\mu \geq c\right] \leq\left[\frac{\mu^{p} \bar{\mu}^{\bar{p}}}{p^{p} \bar{p}^{\bar{p}}}\right]^{n}=e^{-n p \log (p / \mu)-n \bar{p} \log (\bar{p} / \bar{\mu})}=e^{-n K(p: \mu)}
$$

Applying the same result to $\left(1-X_{j}\right)$ and summing gives the two-sided bound

$$
\begin{equation*}
\mathrm{P}\left[\left|\bar{X}_{n}-\mu\right| \geq c\right] \leq 2 e^{-n K(p: \mu)} \leq 2 e^{-2 n c^{2}} \tag{5}
\end{equation*}
$$

This is much stronger than (for example) Chebychev's inequality

$$
\mathrm{P}\left[\left|\bar{X}_{n}-\mu\right| \geq c\right] \leq \frac{\sigma^{2}}{n c^{2}}
$$

because it shrinks geometrically in n; by the Borel-Cantelli Lemma it leads immediately to a version of the strong law of large numbers (SLLN)

$$
\mathrm{P}\left[\bar{X}_{n} \rightarrow \mu\right]=1,
$$

for example, while Chebychev can only get the weak LLN $\mathrm{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right] \rightarrow 0$. Of course, Hoeffding's inequality requires $\left\{X_{j}\right\}$ to be bounded, while Chebychev doesn't, but the bounds don't have to be zero and one. If, say, $a \leq Y_{i} \leq b$ with probability one, then apply Hoeffding's inequality to $X_{i}:=\left(Y_{i}-a\right) /(b-a)$ to find:

$$
\begin{equation*}
\mathrm{P}\left[\bar{Y}_{n}-\mu \geq c\right]=\mathrm{P}\left[\bar{X}_{n}-\frac{\mu-a}{b-a} \geq \frac{c}{b-a}\right] \leq e^{-2 n c^{2} /(b-a)^{2}} \tag{6}
\end{equation*}
$$

(with a similar two-sided version). The $\left\{Y_{i}\right\}$ don't even have to be identically distributed- independence and boundedness are enough. If they satisfy $a_{i} \leq Y_{i} \leq b_{i}$ for each i, then

$$
\begin{equation*}
\mathrm{P}\left[\bar{Y}_{n}-\mu_{n} \geq c\right] \leq e^{-2 n^{2} c^{2} / \sum_{i \leq n}\left(b_{i}-a_{i}\right)^{2}} \tag{7}
\end{equation*}
$$

where $\mu_{n}=\mathrm{E} \hat{Y}_{n}$ is the average mean $\frac{1}{n} \sum_{i \leq n} \mathrm{E}\left[Y_{i}\right]$.
Hoeffding proved this improvement on Chebychev's inequality (at UNC) in 1963. It is closely related to the earlier Azuma's inequality (1967), Chernoff bounds (1952), and Bernstein's inequality (1937). In modern probability theory the distribution measure for Y_{n} is said to be concentrated near μ, making this one of the first of the now popular "concentration inequalities."

[^0]: ${ }^{1}$ In $d=1$ dimension, this is $d_{I}\left(\theta_{0}, \theta_{1}\right):=\left|\int_{\theta_{0}}^{\theta_{1}} \sqrt{I(\theta)} d \theta\right|$, where $I(\theta)$ denotes the Fisher information; in higher dimensions it is $d_{I}\left(\theta_{0}, \theta_{1}\right):=\inf _{\gamma} \int_{0}^{1} \sqrt{\dot{\gamma}^{\prime}(s) I(\theta) \dot{\gamma}(s)} d s$, where the infimum is over all smooth paths $\gamma:[0,1] \rightarrow \Theta$ with "velocity" $\dot{\gamma}(s):=d \gamma / d s$ connecting $\gamma(0)=\theta_{0}$ to $\gamma(1)=\theta_{1}$.

