
1. Independence

1.1. Events

A collection of events {Ai} ⊂ F in some probability space (Ω,F,P) are called
independent if

P [∩i∈IAi] =
∏

i∈I

P[Ai]

for each finite set I of indices. This is a stronger requirement than “pairwise
independence,” the requirement merely that

P[Ai ∩ Aj ] = P[Ai]P[Aj ]

for each i 6= j; for a simple counter-example, toss two fair coins and let
A1 = { first coin shows Heads}, A2 = { second coin shows Heads}, A3 =
{ coins disagree}; then each P[Ai] = 1/2 and each P[Ai ∩ Aj ] = 1/4 for
i 6= j, but ∩Ai = ∅ has probability zero.

1.2. Classes of Events

Classes {Ci} of events are called independent if

P [∩i∈IAi] =
∏

i∈I

P[Ai]

whenever each Ai ∈ Ci. An important tool for simplifying the proof of
independence is

Theorem 1.1 (Basic Criterion). If classes {Ci} of events are independent
and if each Ci is a π-system, then {σ(Ci)} are independent too.

Proof. By induction it is enough to consider independent π-systems C1,
C2. Fix any A2 ∈ C2 and set

L := {B ∈ F : P[B ∩ A2] = P[B] · P[A2]}.

Then

• Ω ∈ L, obviously;

• B ∈ L ⇒ Bc ∈ L, quick computation;

• Bn ∈ L and {Bn} disjoint ⇒ ∪Bn ∈ L, quick computation.

1



Thus L is a λ-system containing C1, and by Dynkin’s π-λ theorem it contains
σ(C1). Thus σ(C1) ⊥⊥ C2; the same argument now shows {σ(C1), σ(C2)} are
independent and induction completes the proof.

1.3. Random Variables

A collection of random variables {Xi} on some probability space (Ω,F,P)
are called independent if

P (∩i∈I [Xi ∈ Bi]) =
∏

i∈I

P[Xi ∈ Bi]

for each finite set I of indices and each collection of Borel sets {Bi ∈ B(R)}.
This is just the same as the requirement that the σ-algebras Fi := σ(Xi) =
Xi

−1(B) be independent; by the Basic Criterion it is enough to check that
the joint CDF functions factor, i.e., that

P
(

∩i∈I [Xi ≤ xi]
)

=
∏

i∈I

Fi(xi)

for each x ∈ R
I (or just a dense set of them). For jointly continuous random

variables this is equivalent to requiring that the joint density function factor
as the product of marginal density functions, while for discrete random
variables it’s equivalent to the usual factorization criterion for the joint p.m.f.

2. Zero-One Laws

2.1. Borel-Cantelli and Borel’s Zero-One Law

Our earlier proof of the Strong Law of Large Numbers for i.i.d. bounded
random variables relied on the almost-trivial:

Lemma 2.1 (Borel-Cantelli). Let {An} be events on a probability space
(Ω,F,P) that satisfy

∞
∑

n=1

P[An] < ∞.

Then the event that infinitely-many of the {An} occur (the limit supremum)
has probability zero.
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Proof.

P

[

∞
⋂

n=1

∞
⋃

m=n

An

]

≤ P

[

∞
⋃

m=n

An

]

≤
∞
∑

m=n

P[An] → 0

This result does not require independence of the {An}, but its partial con-
verse does:

Proposition 2.2 (Borel Zero-One Law). Let {An} be independent

events on a probability space (Ω,F,P) that satisfy

∞
∑

n=1

P[An] = ∞.

Then the event that infinitely-many of the {An} occur (the limit supremum)
has probability one.

Proof. First recall that 1 + x ≤ ex for all real x ∈ R, positive or not. For
each pair of integers 1 ≤ n ≤ N < ∞,

P

[

N
⋂

m=n

Ac
n

]

=

N
∏

m=n

(

1 − P[Am]
)

≤
N
∏

m=n

e−P[Am] = exp

(

−
N
∑

m=n

P[Am]

)

→ exp

(

−
∞
∑

m=n

P[Am]

)

= e−∞ = 0

as N → ∞; thus ∩∞

m=nAc
m is a null set, and

P

[

∞
⋂

n=1

∞
⋃

m=n

An

]

= 1 − P

[

∞
⋃

n=1

∞
⋂

m=n

Ac
n

]

≥ 1 −
∞
∑

n=1

P

(

∞
⋂

m=n

Ac
n

)

= 1

Together these two results comprise a “zero-one law”— for independent
events {An}, the limsup A := lim supAn has probability P(A) = 0 or P(A) =
1, depending on whether the sum ΣP(An) is finite or not.
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2.2. Kolomogorov’s Zero-One Law

For any collection {Xn} of random variables on a probability space (Ω,F,P),
define two sequences of σ-algabras by:

Fn := σ{Xi : i ≤ n} F
′

n := σ{Xi : i ≥ n + 1}

and, from them, construct the π-system P and σ-algebra T by

P :=
∞
⋃

n=1

Fn T :=
∞
⋂

n=1

F
′

n.

In general P will not be a σ-algebra, because will not be closed under count-
able unions and intersections, but it is a π-system, and generates the σ-
algebra σ(P) = ∨Fn ⊆ F.

The class T is called the tail σ-field; it includes such events as “Xn converges”
or “lim sup Xn ≤ 1” or, with Sn :=

∑n
1 Xj , “ 1

n
Sn Converges” or “ 1

n
Sn → 0.”

Theorem 2.3 (Kolmogorov’s Zero-One Law). For independent events
Xn, the tail σ-field T is “almost trivial”— that is, every event Λ ∈ T has
probability P[Λ] = 0 or P[Λ] = 1.

Proof. Let A ∈ P = ∪Fn, and Λ ∈ T. Then for some n ∈ N, A ∈ Fn and
Λ ∈ F′

n, so A ⊥⊥ Λ. Thus P and T are independent; since P is a π-system,
it follows from the Basic Criterion that σ(P) and T are independent. But
each Xn is σ(P)-measurable, so T ⊂ σ(P) and each Λ ∈ T must also be in
σ(P) ⊥⊥ T; thus

P[Λ] = P[Λ ∩ Λ] = P[Λ]P[Λ] = P[Λ]2,

so 0 = P[Λ]
(

1 − P[Λ]
)

proving the theorem.

3. Product Spaces

Do independent random variables exist, with arbitrary (marginal) distribu-
tions? How can they be constructed? One way is to build product proba-
bility spaces; let’s see how to do that.
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Let (Ωj ,Fj ,Pj) be a probability space for j = 1, 2 and set

Ω = Ω1 × Ω2

≡ {(ω1, ω2) : ωj ∈ Ωj}

F = F1 × F2

≡ σ{A1 × A2 : Aj ∈ Fj}

P = P1 × P2, the unique extension satisfying

P(A1 × A2) = P1(A1) · P2(A2).

For any A ∈ F and ω2 ∈ Ω2 the (second) section of A is

Aω2
= {ω1 : (ω1, ω2) ∈ A} ⊂ Ω1.

It’s not completely obvious, but one can verify that Aω2
∈ F1— it’s trivial

for product sets A = A1 ×A2, but we need a π − λ argument to conclude it
for all of F. What happens for sets A ⊂ FP in the P-completion of F1 ×F2?

Similarly, for any F-measurable random variable X : Ω1 ×Ω2 → S (S would
be R, for real-valued RV’s, but could also be R

n or any metric space), and
for any ω2 ∈ Ω2, the section of X is Xω2

: Ω1 → S defined by

Xω2
(ω1) = X(ω1, ω2).

If X = 1A is the indicator function of some set A ∈ F, then the section Xω2
is

the indicator function Xω2
= 1Aω2

of the section Aω2
. It is (again) perhaps

not quite obvious, but true, that Xω2
is F1-measurable. It follows most

easily from the same result for sets, upon looking at the set A = X−1(B) =
{ω : X(ω) ∈ B} for arbitrary B ∈ σ(S) and checking that Aω2

= X−1
ω2

(B) =
{ω : X(ω) ∈ B}. Is it still true if X is only FP-measurable?

Finally,

3.1. Fubini

Fubini’s theorem gives conditions (namely, that either X ≥ 0 or E|X| < ∞)
to guarantee that these three integrals are meaningful and equal:

∫

Ω2

{
∫

Ω1

Xω2
dP1

}

dP2
?
=

∫∫

Ω
X dP

?
=

∫

Ω1

{
∫

Ω2

Xω1
dP2

}

dP1
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