
STA205 Probability: Week 8 R. Wolpert

INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS

The traditional interpretation of the probability of an event E is its asymptotic frequency:
the limit as n → ∞ of the fraction of n repeated, similar, and independent trials in which E oc-
curs. Similarly the “expectation” of a random variable X is taken to be its asymptotic average,
the limit as n → ∞ of the average of n repeated, similar, and independent replications of X. As
statisticians trying to make inference about the underlying probability distribution f(x|θ) govern-
ing observed random variables Xi, this suggests that we should be interested in the probability
distribution for large n of quantities like the average of the RV’s, X̄n ≡ 1

n

∑n
i=1 Xi.

Three of the most celebrated theorems of probability theory concern this sum. For indepen-
dent random variables Xi, all with the same probability distribution satisfying E|Xi|3 < ∞, set
µ = EXi, σ2 = E|Xi − µ|2, and Sn =

∑n
i=1 Xi. The three main results are:

Laws of Large Numbers:
Sn − nµ

σn
−→ 0 (i.p. and a.s.)

Central Limit Theorem:
Sn − nµ

σ
√

n
=⇒ N(0, 1) (i.d.)

Law of the Iterated Logarithm:

lim sup
n→∞

± Sn − nµ

σ
√

2n log log n
= 1.0 (a.s.)

Together these three give a clear picture of how quickly and in what sense 1
nSn tends to µ. We

begin with the Law of Large Numbers (LLN), in its “weak” form (asserting convergence i.p.) and
in its “strong” form (convergence a.s.). There are several versions of both theorems. The sim-
plest requires the Xi to be IID and L2; stronger results allow us to weaken (but not eliminate)
the independence requirement, permit non-identical distributions, and consider what happens if
the RV’s are only L1 (or worse!) instead of L2.

The text covers these things well; to complement it I am going to: (1) Prove the simplest
version, and with it the Borel-Cantelli theorems; and (2) Show what happens with Cauchy ran-
dom variables, which don’t satisfy the requirements (the LLN fails).
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I. Weak version, non-iid, L2: µi = EXi, σij = E[Xi − µi][Xj − µj ]
A. Yn = (Sn − Σµi)/n satisfies EYn = 0, EY 2

n = 1
n2 Σi≤nσii + 2

n2 Σi<j≤nσij;

1. If σii ≤ M and σij ≤ 0 or |σij | < Mr|i−j|, r < 1, Chebychev =⇒ Yn → 0, i.p.

2. (pairwise) IID L2 is OK
II. Strong version, non-iid, L2: EXi = 0, EX2

i ≤ M , EXiXj ≤ 0.
A. P[|Sn| > nǫ] < Mn

n2ǫ2
= M

nǫ2

1. P[|Sn2 | > n2ǫ] < M
n2ǫ2

, ΣnP[|Sn2 | > n2ǫ] < Mπ2

6ǫ2

2. Borel-Cantelli: P[|Sn2 | > n2ǫ i.o.] = 0, ∴
1

n2 Sn2 → 0 a.s.

3. Dn = maxn2<k<(n+1)2 |Sk − Sn2 |, ED2
n ≤ 2nE|S(n+1)2 − Sn2 |2 ≤ 4n2M

4. Chebychev: P[Dn > n2ǫ] < 4n2M
n4ǫ2 , ∴ Dn → 0 a.s.

B. |Sk/k| ≤ |S
n2 |+Dn

n2 → 0 a.s., QED
1. Bernoulli RV’s, normal number theorem, Monte Carlo integration.

III. Weak version, pairwise-iid, L1

A. Equivalent sequences:
∑

n P[Xn 6= Yn] < ∞
1.

∑

n[Xn − Yn] < ∞ a.s.

2.
∑n

i=1[Xi], an

∑n
i=1[Xi] converge iff

∑n
i=1[Yi], an

∑n
i=1[Yi] both converge

3. Yn = Xn1[|Xn|≤n]

IV. Counterexamples: Cauchy,
A. Xi ∼ dx

π[1+x2]
=⇒ P[|Sn|/n ≤ ǫ] ≡ 2

π
tan−1(ǫ) 6→ 1, WLLN fails.

B. P[Xi = ±n] = c
n2 , n ≥ 1; Xi /∈ L1, and Sn/n 6→ 0 i.p. or a.s.

C. P[Xi = ±n] = c
n2 log n , n > 1; Xi /∈ L1, but Sn/n → 0 i.p. and not a.s.

D. Medians: for ANY RV’s Xn → X∞ i.p., then mn → m∞ if m∞ is unique.
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Let Xi be iid standard Cauchy RV’s, with

P[X1 ≤ t] =

∫ t

−∞

dx

π[1 + x2]
=

1

2
+

1

π
arctan(t)

and characteristic function

E eiωX1 =

∫ ∞

−∞

eiωx dx

π[1 + x2]
= e−|ω|,

so Sn/n has characteristic function

E eiωSn/n = E ei ω

n
[X1+···+Xn] =

(

E ei ω

n
X1

)n

= (e−|ω

n
|)n = e−|ω|

and Sn/n also has the standard Cauchy distribution with P[Sn/n ≤ t] = 1
2

+ 1
π

arctan(t); in
particular, Sn/n does not converge almost surely, or even in probability.

A LAW OF LARGE NUMBERS FOR CORRELATED SEQUENCES

In many applications we would like a Law of Large Numbers for sequences of random vari-
ables that are not independent; for example, in Markov Chain Monte Carlo integration, we have
a stationary Markov chain {Xt} (this means that the distribution of Xt is the same for all t and
that the conditional distribution of Xu for u > t, given {Xs|s ≤ t}, depends only on Xt) and
want to estimate the population mean E[φ(Xt)] for some function φ(·) by the sample mean

E[φ(Xt)] ≈
1

T

T
∑

t=1

φ(Xt).

Even though they are identically distributed, the random variables Yt ≡ φ(Xt) won’t be indepen-
dent if the Xt aren’t independent, so the LLN we already have doesn’t quite apply.

A sequence of random variables Yt is called stationary if each Yt has the same probability
distribution and, moreover, each finite set (Yt1+h, Yt2+h, ..., Ytk+h) has a joint distribution that
doesn’t depend on h. The sequence is called “L2” if each Yt has a finite variance σ2 (and hence
also a well-defined mean µ); by stationarity it also follows that the covariance

γst = E[(Ys − µ)(Yt − µ)]

is finite and depends only on the absolute difference |t − s|.
Theorem. If a stationary L2 sequence has a summable covariance, i.e., satisfies

∑∞
t=−∞ |γst| ≤

c < ∞, then

E[Yt] = lim
T→∞

1

T

T
∑

t=1

Yt.

Proof. Let ST be the sum of the first T Yt’s and set (as usual) ȲT ≡ ST /T . The variance of ST is

E[(ST − Tµ)2] =
T

∑

s=1

T
∑

t=1

E[(Xs − µ)(Xt − µ)]

≤
T

∑

s=1

∞
∑

t=−∞

|γst|

≤ T c,
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so ȲT had variance V[ȲT ] ≤ c/T and by Chebychev’s inequality

P[|ȲT − µ| > ǫ] ≤ E[(ȲT − µ)2]

ǫ2

=
E[(ST − Tµ)2]

T 2ǫ2

≤ T c

T 2ǫ2

=
c

T ǫ2
→ 0 as T → ∞.

A strong LLN follows with a bit more work, just as for iid random variables.

Examples

1. IID: If Xt are independent and identically distributed, and if Yt = φ(Xt) has finite variance
σ2, then Yt has a well-defined finite mean µ and ȲT → µ.

Here γst =

{

σ2 if s = t
0 if s 6= t

, so c = σ2 < ∞.

2. AR1: If Zt are iid N(0, 1) for −∞ < t < ∞, µ ∈ R, σ > 0, −1 < ρ < 1, and

Xt ≡ µ + σ

∞
∑

s=0

ρsZt−s

= ρXt−1 + α + σZt, (∗)
where α = (1 − ρ)µ, then the Xt are identically distributed (all with the N(µ, σ2

1−ρ2 ) distri-

bution) but not independent (since γst = σ2

1−ρ2 ρ|s−t| 6= 0); this is called an “autoregressive

process” (because of equation (*), expressing Xt as a regression of previous Xs’s) of order
one (because only one earlier Xs appears in (*)), and is about the simplest non-iid sequence
occuring in applications. Since the covariance is summable,

∞
∑

t=−∞

|γst| =
σ2

1 − ρ2

1 + |ρ|
1 − |ρ| =

σ2

(1 − |ρ|)2 < ∞,

we again have X̄T → µ as T → ∞.
2. Geometric Ergodicity: If for some 0 < ρ < 1 and c > 0 we have γst ≤ cρ|s−t| for a Markov

chain Yt the chain is called Geometrically Ergodic (because cρt is a geometric sequence), and
the same argument as for AR1 shows that Ȳt converges; Meyn & Tweedie (1993), Tierney
(1994), and others have given conditions for MCMC chains to be Geometric Ergodic, and
hence for the almost-sure convergence of sample averages to population means.

3. General Ergodicity: Consider the three sequences of random variables on (Ω,F,P) with
Ω = (0, 1] and F = B(Ω), each with X0(ω) = ω:

1. Xn+1 ≡ 2Xn (mod 1);
2. Xn+1 ≡ Xn + α (mod 1) (Does it matter if α is rational?);
3. Xn+1 ≡ 4Xn(1 − Xn).

For each, find a probability measure P (equivalently find a distribution for X0) such that the
Xn are all identically distributed; the sequence is called ergodic if each E ∈ F left invariant
by the transformation T that takes Xn to Xn+1, E = T−1(E), is trivial in the sense that
P[E] = 0 or P[E] = 1. The Ergodic Theorem asserts that X̄n converges almost-surely to a
T -invariant limit X∞ as n → ∞; since only constants are T -invariant for ergodic sequences,
it follows that X̄n → µ = EXn. The conditions here are weaker than those for the usual
LLN; in all three cases above, for example, each Xn is completely determined by X0 so there
is complete dependence!
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Stable Limit Laws

Let Sn = X1 + ...+Xn be the partial sum of iid random variables. IF the random variables are all
square integrable, THEN the Central Limit Theorem applies and necessarily Sn

nσ2 −µ =⇒ No(0, 1).
But what if each Xn is not square integrable? We have already seen CLT fail for Cauchy vari-
ables Xj . Denote by F (x) = P[Xn ≤ x] the common CDF of the {Xn}.
Theorem (Stable Limit Law).

There exist constants An > 0 and Bn ∈ R and a distribution µ for which the

Sn

An
− Bn =⇒ µ

if and only if there are constants 0 < α ≤ 2, M− ≥ 0, and M+ ≥ 0, with M− + M+ > 0, such
that the following limits hold for every ξ > 0 as x → +∞:

1.
F (−x)

1 − F (x)
=

P[X ≤ −x]

P[X > x]
→ M−

M+
;

2. M+ > 0 ⇒ 1 − F (xξ)

1 − F (x)
→ ξ−α M− > 0 ⇒ F (−xξ)

F (−x)
→ ξ−α.

In this case the limit is the Stable Distribution with index α, with characteristic function

E[eiωY ] = e
iδω − γ|ω|α[1 − iβ tan

πα

2
sgn(ω)]

,

where β = M+

M−+M+ and γ = (M− + M+). The sequence An must be essentially An ∝ n1/α (more

precisely, the sequence Cn = n−1/αAn is slowly changing in the sense that

1 = lim
n→∞

Ccn

Cn

for every c > 0); thus partial sums converge to stable distributions at rate n−1/α, more slowly
(much more slowly, if α is close to one) than in the L2 (Gaussian) case of the central limit theo-
rem.

Note that the Cauchy distribution is the special case of (α, β, γ, δ) = (1, 0, 1, 0) and the
Normal distribution is the special case of (α, β, γ, δ) = (2, 0, σ2/2, µ). Although each Stable dis-
tribution has an absolutely continuous distribution with continuous probability density function
f(y), these two cases and the “inverse gamma distribution” with α = 1/2 and β = ±1 are the
only ones where the p.d.f. can be given in closed form. Moments are easy enough to compute;
for α < 2 the Stable distribution only has finite moments of order p < α and, in particular, none

of them has a finite variance. The Cauchy has finite moments of order p < 1 but does not have a
well-defined mean.

Condition 2. says that each tail must be fall off like a power (sometimes called Pareto tails),
and the powers must be identical; Condition 1. gives the tail ratio. In a common special case,
M− = 0; for example, random variables Xn with the Pareto distribution (often used to model
income) given by P [Xn > t] = (k/t)α for t ≥ k will have a stable limit for their partial sums if
α < 2, and (by CLT) a normal limit if α ≥ 2. You can find out more details reading Chapter 9 of
Breiman’s book.
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