INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS

The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as $n \rightarrow \infty$ of the fraction of n repeated, similar, and independent trials in which E occurs. Similarly the "expectation" of a random variable X is taken to be its asymptotic average, the limit as $n \rightarrow \infty$ of the average of n repeated, similar, and independent replications of X. As statisticians trying to make inference about the underlying probability distribution $f(x \mid \theta)$ governing observed random variables X_{i}, this suggests that we should be interested in the probability distribution for large n of quantities like the average of the RV's, $\bar{X}_{n} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Three of the most celebrated theorems of probability theory concern this sum. For independent random variables X_{i}, all with the same probability distribution satisfying $\mathrm{E}\left|X_{i}\right|^{3}<\infty$, set $\mu=\mathrm{E} X_{i}, \sigma^{2}=\mathrm{E}\left|X_{i}-\mu\right|^{2}$, and $S_{n}=\sum_{i=1}^{n} X_{i}$. The three main results are: Laws of Large Numbers:

$$
\frac{S_{n}-n \mu}{\sigma n} \longrightarrow 0
$$

(i.p. and a.s.)

Central Limit Theorem:

$$
\begin{equation*}
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \Longrightarrow N(0,1) \tag{i.d.}
\end{equation*}
$$

Law of the Iterated Logarithm:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \pm \frac{S_{n}-n \mu}{\sigma \sqrt{2 n \log \log n}}=1.0 \tag{a.s.}
\end{equation*}
$$

Together these three give a clear picture of how quickly and in what sense $\frac{1}{n} S_{n}$ tends to μ. We begin with the Law of Large Numbers (LLN), in its "weak" form (asserting convergence i.p.) and in its "strong" form (convergence a.s.). There are several versions of both theorems. The simplest requires the X_{i} to be IID and L_{2}; stronger results allow us to weaken (but not eliminate) the independence requirement, permit non-identical distributions, and consider what happens if the RV's are only L_{1} (or worse!) instead of L_{2}.

The text covers these things well; to complement it I am going to: (1) Prove the simplest version, and with it the Borel-Cantelli theorems; and (2) Show what happens with Cauchy random variables, which don't satisfy the requirements (the LLN fails).
I. Weak version, non-iid, $L_{2}: \mu_{i}=\mathrm{E} X_{i}, \sigma_{i j}=\mathrm{E}\left[X_{i}-\mu_{i}\right]\left[X_{j}-\mu_{j}\right]$
A. $Y_{n}=\left(S_{n}-\Sigma \mu_{i}\right) / n$ satisfies $\mathrm{E} Y_{n}=0$, $\mathrm{E} Y_{n}^{2}=\frac{1}{n^{2}} \Sigma_{i \leq n} \sigma_{i i}+\frac{2}{n^{2}} \Sigma_{i<j \leq n} \sigma_{i j}$;

1. If $\sigma_{i i} \leq M$ and $\sigma_{i j} \leq 0$ or $\left|\sigma_{i j}\right|<M r^{|i-j|}, r<1$, Chebychev $\Longrightarrow Y_{n} \rightarrow 0$, i.p.
2. (pairwise) IID L_{2} is OK
II. Strong version, non-iid, $L_{2}: \mathrm{E} X_{i}=0, \mathrm{E} X_{i}^{2} \leq M, \mathrm{E} X_{i} X_{j} \leq 0$.
A. $\mathrm{P}\left[\left|S_{n}\right|>n \epsilon\right]<\frac{M n}{n^{2} \epsilon^{2}}=\frac{M}{n \epsilon^{2}}$
3. $\mathrm{P}\left[\left|S_{n^{2}}\right|>n^{2} \epsilon\right]<\frac{M}{n^{2} \epsilon^{2}}, \Sigma_{n} \mathrm{P}\left[\left|S_{n^{2}}\right|>n^{2} \epsilon\right]<\frac{M \pi^{2}}{6 \epsilon^{2}}$
4. Borel-Cantelli: $\mathrm{P}\left[\left|S_{n^{2}}\right|>n^{2} \epsilon\right.$ i.o. $]=0, \therefore \frac{1}{n^{2}} S_{n^{2}} \rightarrow 0$ a.s.
5. $D_{n}=\max _{n^{2}<k<(n+1)^{2}}\left|S_{k}-S_{n^{2}}\right|$, $\mathrm{E} D_{n}^{2} \leq 2 n \mathrm{E}\left|S_{(n+1)^{2}}-S_{n^{2}}\right|^{2} \leq 4 n^{2} M$
6. Chebychev: $\mathrm{P}\left[D_{n}>n^{2} \epsilon\right]<\frac{4 n^{2} M}{n^{4} \epsilon^{2}}, \therefore D_{n} \rightarrow 0$ a.s.
B. $\left|S_{k} / k\right| \leq \frac{\left|S_{n^{2}}\right|+D_{n}}{n^{2}} \rightarrow 0$ a.s., QED
7. Bernoulli RV's, normal number theorem, Monte Carlo integration.
III. Weak version, pairwise-iid, L_{1}
A. Equivalent sequences: $\sum_{n} \mathrm{P}\left[X_{n} \neq Y_{n}\right]<\infty$
8. $\sum_{n}\left[X_{n}-Y_{n}\right]<\infty$ a.s.
9. $\sum_{i=1}^{n}\left[X_{i}\right], a_{n} \sum_{i=1}^{n}\left[X_{i}\right]$ converge iff $\sum_{i=1}^{n}\left[Y_{i}\right], a_{n} \sum_{i=1}^{n}\left[Y_{i}\right]$ both converge
10. $Y_{n}=X_{n} 1_{\left[\left|X_{n}\right| \leq n\right]}$
IV. Counterexamples: Cauchy,
A. $X_{i} \sim \frac{d x}{\pi\left[1+x^{2}\right]} \Longrightarrow \mathrm{P}\left[\left|S_{n}\right| / n \leq \epsilon\right] \equiv \frac{2}{\pi} \tan ^{-1}(\epsilon) \nrightarrow 1$, WLLN fails.
B. $\mathrm{P}\left[X_{i}= \pm n\right]=\frac{c}{n^{2}}, n \geq 1 ; X_{i} \notin L_{1}$, and $S_{n} / n \nrightarrow 0$ i.p. or a.s.
C. $\mathrm{P}\left[X_{i}= \pm n\right]=\frac{c}{n^{2} \log n}, n>1 ; X_{i} \notin L_{1}$, but $S_{n} / n \rightarrow 0$ i.p. and not a.s.
D. Medians: for ANYRV's $X_{n} \rightarrow X_{\infty}$ i.p., then $m_{n} \rightarrow m_{\infty}$ if m_{∞} is unique.

Let X_{i} be iid standard Cauchy RV's, with

$$
\mathrm{P}\left[X_{1} \leq t\right]=\int_{-\infty}^{t} \frac{d x}{\pi\left[1+x^{2}\right]}=\frac{1}{2}+\frac{1}{\pi} \arctan (t)
$$

and characteristic function

$$
\mathrm{E} e^{i \omega X_{1}}=\int_{-\infty}^{\infty} e^{i \omega x} \frac{d x}{\pi\left[1+x^{2}\right]}=e^{-|\omega|}
$$

so S_{n} / n has characteristic function

$$
\mathrm{E} e^{i \omega S_{n} / n}=\mathrm{E} e^{i \frac{\omega}{n}\left[X_{1}+\cdots+X_{n}\right]}=\left(\mathrm{E} e^{i \frac{\omega}{n} X_{1}}\right)^{n}=\left(e^{-\left|\frac{\omega}{n}\right|}\right)^{n}=e^{-|\omega|}
$$

and S_{n} / n also has the standard Cauchy distribution with $\mathrm{P}\left[S_{n} / n \leq t\right]=\frac{1}{2}+\frac{1}{\pi} \arctan (t)$; in particular, S_{n} / n does not converge almost surely, or even in probability.

A LAW OF LARGE NUMBERS FOR CORRELATED SEQUENCES

In many applications we would like a Law of Large Numbers for sequences of random variables that are not independent; for example, in Markov Chain Monte Carlo integration, we have a stationary Markov chain $\left\{X_{t}\right\}$ (this means that the distribution of X_{t} is the same for all t and that the conditional distribution of X_{u} for $u>t$, given $\left\{X_{s} \mid s \leq t\right\}$, depends only on X_{t}) and want to estimate the population mean $\mathrm{E}\left[\phi\left(X_{t}\right)\right]$ for some function $\phi(\cdot)$ by the sample mean

$$
\mathrm{E}\left[\phi\left(X_{t}\right)\right] \approx \frac{1}{T} \sum_{t=1}^{T} \phi\left(X_{t}\right)
$$

Even though they are identically distributed, the random variables $Y_{t} \equiv \phi\left(X_{t}\right)$ won't be independent if the X_{t} aren't independent, so the LLN we already have doesn't quite apply.

A sequence of random variables Y_{t} is called stationary if each Y_{t} has the same probability distribution and, moreover, each finite set $\left(Y_{t_{1}+h}, Y_{t_{2}+h}, \ldots, Y_{t_{k}+h}\right)$ has a joint distribution that doesn't depend on h. The sequence is called " L_{2} " if each Y_{t} has a finite variance σ^{2} (and hence also a well-defined mean μ); by stationarity it also follows that the covariance

$$
\gamma_{s t}=\mathrm{E}\left[\left(Y_{s}-\mu\right)\left(Y_{t}-\mu\right)\right]
$$

is finite and depends only on the absolute difference $|t-s|$.
Theorem. If a stationary L_{2} sequence has a summable covariance, i.e., satisfies $\sum_{t=-\infty}^{\infty}\left|\gamma_{s t}\right| \leq$ $c<\infty$, then

$$
\mathrm{E}\left[Y_{t}\right]=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} Y_{t}
$$

Proof. Let S_{T} be the sum of the first $T Y_{t}$'s and set (as usual) $\bar{Y}_{T} \equiv S_{T} / T$. The variance of S_{T} is

$$
\begin{aligned}
\mathrm{E}\left[\left(S_{T}-T \mu\right)^{2}\right] & =\sum_{s=1}^{T} \sum_{t=1}^{T} \mathrm{E}\left[\left(X_{s}-\mu\right)\left(X_{t}-\mu\right)\right] \\
& \leq \sum_{s=1}^{T} \sum_{t=-\infty}^{\infty}\left|\gamma_{s t}\right| \\
& \leq T c
\end{aligned}
$$

so \bar{Y}_{T} had variance $\mathrm{V}\left[\bar{Y}_{T}\right] \leq c / T$ and by Chebychev's inequality

$$
\begin{aligned}
\mathrm{P}\left[\left|\bar{Y}_{T}-\mu\right|>\epsilon\right] & \leq \frac{\mathrm{E}\left[\left(\bar{Y}_{T}-\mu\right)^{2}\right]}{\epsilon^{2}} \\
& =\frac{\mathrm{E}\left[\left(S_{T}-T \mu\right)^{2}\right]}{T^{2} \epsilon^{2}} \\
& \leq \frac{T c}{T^{2} \epsilon^{2}} \\
& =\frac{c}{T \epsilon^{2}} \rightarrow 0 \quad \text { as } T \rightarrow \infty .
\end{aligned}
$$

A strong LLN follows with a bit more work, just as for iid random variables.

Examples

1. IID: If X_{t} are independent and identically distributed, and if $Y_{t}=\phi\left(X_{t}\right)$ has finite variance σ^{2}, then Y_{t} has a well-defined finite mean μ and $\bar{Y}_{T} \rightarrow \mu$.
Here $\gamma_{s t}=\left\{\begin{array}{ll}\sigma^{2} & \text { if } s=t \\ 0 & \text { if } s \neq t\end{array}\right.$, so $c=\sigma^{2}<\infty$.
2. $\mathbf{A R}_{1}$: If Z_{t} are iid $N(0,1)$ for $-\infty<t<\infty, \mu \in \mathbb{R}, \sigma>0,-1<\rho<1$, and

$$
\begin{align*}
X_{t} & \equiv \mu+\sigma \sum_{s=0}^{\infty} \rho^{s} Z_{t-s} \\
& =\rho X_{t-1}+\alpha+\sigma Z_{t}, \tag{*}
\end{align*}
$$

where $\alpha=(1-\rho) \mu$, then the X_{t} are identically distributed (all with the $N\left(\mu, \frac{\sigma^{2}}{1-\rho^{2}}\right)$ distribution) but not independent (since $\gamma_{s t}=\frac{\sigma^{2}}{1-\rho^{2}} \rho^{|s-t|} \neq 0$); this is called an "autoregressive process" (because of equation (*), expressing X_{t} as a regression of previous X_{s} 's) of order one (because only one earlier X_{s} appears in $\left({ }^{*}\right)$), and is about the simplest non-iid sequence occuring in applications. Since the covariance is summable,

$$
\sum_{t=-\infty}^{\infty}\left|\gamma_{s t}\right|=\frac{\sigma^{2}}{1-\rho^{2}} \frac{1+|\rho|}{1-|\rho|}=\frac{\sigma^{2}}{(1-|\rho|)^{2}}<\infty
$$

we again have $\bar{X}_{T} \rightarrow \mu$ as $T \rightarrow \infty$.
2. Geometric Ergodicity: If for some $0<\rho<1$ and $c>0$ we have $\gamma_{s t} \leq c \rho^{|s-t|}$ for a Markov chain Y_{t} the chain is called Geometrically Ergodic (because $c \rho^{t}$ is a geometric sequence), and the same argument as for AR_{1} shows that \bar{Y}_{t} converges; Meyn \& Tweedie (1993), Tierney (1994), and others have given conditions for MCMC chains to be Geometric Ergodic, and hence for the almost-sure convergence of sample averages to population means.
3. General Ergodicity: Consider the three sequences of random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ with $\Omega=(0,1]$ and $\mathcal{F}=\mathcal{B}(\Omega)$, each with $X_{0}(\omega)=\omega$:

1. $X_{n+1} \equiv 2 X_{n} \quad(\bmod 1)$;
2. $X_{n+1} \equiv X_{n}+\alpha \quad(\bmod 1)$ (Does it matter if α is rational?);
3. $X_{n+1} \equiv 4 X_{n}\left(1-X_{n}\right)$.

For each, find a probability measure P (equivalently find a distribution for X_{0}) such that the X_{n} are all identically distributed; the sequence is called ergodic if each $E \in \mathcal{F}$ left invariant by the transformation T that takes X_{n} to $X_{n+1}, E=T^{-1}(E)$, is trivial in the sense that $\mathrm{P}[E]=0$ or $\mathrm{P}[E]=1$. The Ergodic Theorem asserts that \bar{X}_{n} converges almost-surely to a T-invariant limit X_{∞} as $n \rightarrow \infty$; since only constants are T-invariant for ergodic sequences, it follows that $\bar{X}_{n} \rightarrow \mu=\mathrm{E} X_{n}$. The conditions here are weaker than those for the usual LLN; in all three cases above, for example, each X_{n} is completely determined by X_{0} so there is complete dependence!

Stable Limit Laws

Let $S_{n}=X_{1}+\ldots+X_{n}$ be the partial sum of iid random variables. IF the random variables are all square integrable, THEN the Central Limit Theorem applies and necessarily $\frac{S_{n}}{n \sigma^{2}}-\mu \Longrightarrow \operatorname{No}(0,1)$. But what if each X_{n} is not square integrable? We have already seen CLT fail for Cauchy variables X_{j}. Denote by $F(x)=\mathrm{P}\left[X_{n} \leq x\right]$ the common CDF of the $\left\{X_{n}\right\}$.

Theorem (Stable Limit Law).

There exist constants $A_{n}>0$ and $B_{n} \in \mathbb{R}$ and a distribution μ for which the

$$
\frac{S_{n}}{A_{n}}-B_{n} \Longrightarrow \mu
$$

if and only if there are constants $0<\alpha \leq 2, M^{-} \geq 0$, and $M^{+} \geq 0$, with $M^{-}+M^{+}>0$, such that the following limits hold for every $\xi>0$ as $x \rightarrow+\infty$:

$$
\begin{aligned}
& \text { 1. } \frac{F(-x)}{1-F(x)}=\frac{\mathrm{P}[X \leq-x]}{\mathrm{P}[X>x]} \rightarrow \frac{M^{-}}{M^{+}} ; \\
& \text {2. } M^{+}>0 \Rightarrow \frac{1-F(x \xi)}{1-F(x)} \rightarrow \xi^{-\alpha} \quad M^{-}>0 \Rightarrow \frac{F(-x \xi)}{F(-x)} \rightarrow \xi^{-\alpha} \text {. }
\end{aligned}
$$

In this case the limit is the Stable Distribution with index α, with characteristic function

$$
\mathrm{E}\left[e^{i \omega Y}\right]=e^{i \delta \omega-\gamma|\omega|^{\alpha}\left[1-i \beta \tan \frac{\pi \alpha}{2} \operatorname{sgn}(\omega)\right]}
$$

where $\beta=\frac{M^{+}}{M^{-}+M^{+}}$and $\gamma=\left(M^{-}+M^{+}\right)$. The sequence A_{n} must be essentially $A_{n} \propto n^{1 / \alpha}$ (more precisely, the sequence $C_{n}=n^{-1 / \alpha} A_{n}$ is slowly changing in the sense that

$$
1=\lim _{n \rightarrow \infty} \frac{C_{c n}}{C_{n}}
$$

for every $c>0$); thus partial sums converge to stable distributions at rate $n^{-1 / \alpha}$, more slowly (much more slowly, if α is close to one) than in the L^{2} (Gaussian) case of the central limit theorem.

Note that the Cauchy distribution is the special case of $(\alpha, \beta, \gamma, \delta)=(1,0,1,0)$ and the Normal distribution is the special case of $(\alpha, \beta, \gamma, \delta)=\left(2,0, \sigma^{2} / 2, \mu\right)$. Although each Stable distribution has an absolutely continuous distribution with continuous probability density function $f(y)$, these two cases and the "inverse gamma distribution" with $\alpha=1 / 2$ and $\beta= \pm 1$ are the only ones where the p.d.f. can be given in closed form. Moments are easy enough to compute; for $\alpha<2$ the Stable distribution only has finite moments of order $p<\alpha$ and, in particular, none of them has a finite variance. The Cauchy has finite moments of order $p<1$ but does not have a well-defined mean.

Condition 2. says that each tail must be fall off like a power (sometimes called Pareto tails), and the powers must be identical; Condition 1. gives the tail ratio. In a common special case, $M^{-}=0$; for example, random variables X_{n} with the Pareto distribution (often used to model income) given by $P\left[X_{n}>t\right]=(k / t)^{\alpha}$ for $t \geq k$ will have a stable limit for their partial sums if $\alpha<2$, and (by CLT) a normal limit if $\alpha \geq 2$. You can find out more details reading Chapter 9 of Breiman's book.

