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Fourier Transforms of Measures

Sums of Independent Random Variables

We begin our study of sums of independent random variables, Sn = X1 + · · ·Xn. If each Xi

is square integrable, with mean µi = EXi and variance σ2
i = E[(Xi − µi)

2], then Sn is square
integrable too with mean ESn = µ≤n =

∑

i≤n µi and variance VSn = σ2
≤n =

∑

i≤n σ2
i . But what

about the actual probability distribution? If the Xi have density functions fi(xi) then so does
Sn; for example, with n = 2, S2 = X1 + X2 has CDF F (s) and pdf f(s) = F ′(s) given by

P[S2 ≤ s] = F (s) =

∫∫

x1+x2≤s

f1(x1)f2(x2) dx1dx2

=

∫ ∞

−∞

∫ s−x2

−∞
f1(x1)f2(x2) dx1dx2

f(s) = F ′(s) =

∫ ∞

−∞
f1(s − x2)f2(x2) dx2

=

∫ ∞

−∞
f1(x1)f2(s − x1) dx1,

the convolution of f1(x1) and f2(x2). Even if the distributions aren’t absolutely continuous, so no
pdf’s exist, S2 has a distribution measure µ given by µ(ds) =

∫

R
µ1(dx1)µ2(ds − x1). There is an

analogous formula for n = 3, but it is quite messy; things get worse and worse as n increases, so
this is not a promising approach for studying the distribution of sums Sn for large n.

If CDF’s and pdf’s of sums of independent RV’s are not simple, is there some other feature
of the distributions that is? The answer is Yes. What is simple about independent random vari-
ables is calculating expectations of products of the Xi, or products of any functions of the Xi;
the exponential function will let us turn the partial sums Sn into products eSn =

∏

eXi or, more
generally, ezSn =

∏

ezXi for any real or complex number z. Thus for independent RV’s Xi and
any number z we can use independence to compute the expectation

EezSn =

n
∏

i=1

EezXi ,

often called the “moment generating function” and denoted MX(z) = EezX for any random vari-
able X.

For real z the function ezX becomes huge if X becomes very large (for positive z) or very
negative (if z < 0), so that even for integrable or square-integrable random variables X the ex-
pectation M(z) = EezX may be infinite. Here are a few examples of EezX for some familiar dis-
tributions:

Binomial: Bi(n, p) [1 + p(ez − 1)]N z ∈ C

Neg Bin: NB(α, p) [1 − (p/q)(ez − 1)]−α z ∈ C

Poisson Po(λ) eλ(ez−1) z ∈ C

Normal: No(µ, σ2) ezµ+z2σ2/2 z ∈ C

Gamma: Ga(α, β) (1 − z/β)−α ℜ(z) < β

Cauchy:
a

π(a2 + (x − b)2)
ezb−a|z| ℜ(z) = 0
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Aside from the problem that M(z) = EezX may fail to exist for some z ∈ C, the approach is
promising: we can identify the probability distribution from M(z), and we can even find impor-
tant features about the distribution directly from M : if we can justify interchanging the limits
implicit in differentiation and integration, then M ′(z) = E[XezX ] and M ′′(z) = E[X2ezX ], so
(upon taking z = 0) M ′(0) = EX = µ and M ′′(0) = EX2 = σ2 + µ2, so we can calculate the mean
and variance (and other moments EXk = M (k)(0)) from derivatives of M(z) at zero. We have
two problems to overcome: discovering how to infer the distribution of X from MX(z) = EezX ,
and what to do about distributions for which M(z) doesn’t exist.

Characteristic Functions

For complex numbers z = x + iy the exponential ez can be given in terms of familiar real-valued
transcendental functions as ex+iy = ex cos(y) + iex sin(y). Since both sin(y) and cos(y) are
bounded by one, for any real-valued random variable X and real number ω the real and imagi-
nary parts of the complex-valued random variable eiωX are bounded and hence integrable; thus it
always makes sense to define the characteristic function

φX(ω) = EeiωX =

∫

R

eiωxµX(dx).

Of course this is just φX(ω) = MX(iω) when MX exists, but φX(ω) exists even when MX does
not; on the chart above you’ll notice that only the real part of z posed problems, and ℜ(z) = 0
was always OK, even for the Cauchy.

Binomial: Bi(n, p) [1 + p(eiω − 1)]N

Neg Bin: NB(α, p) [1 − (p/q)(eiω − 1)]−α

Poisson Po(λ) eλ(eiω−1)

Normal: No(µ, σ2) eiωµ−ω2σ2/2

Gamma: Ga(α, β) (1 − iω/β)−α

Cauchy:
a/π

a2 + (x − b)2
eiωb−a|ω|

Uniqueness

Suppose that two probability distributions µ1(A) = P[X1 ∈ A] and µ2(A) = P[X2 ∈ A] have the
same Fourier transforms µ̂j(ω) = E[eiωXj ] =

∫

R
eiωx µj(dx); does it follow that X1 and X2 have

the same probability distributions, i.e., that µ1 = µ2? The answer is yes; in fact, one can recover
the measure µ explicitly from the function µ̂(ω). Thus we regard uniqueness as a corollary of the
much stronger result, the Fourier Inversion Theorem.

Resnick has lots of interesting results about characteristic functions in Chapter 9, Grimmett
and Stirzaker discuss related results in their Chapter 5, and Billingsley proves several versions
of this theorem in his Section 26; I’m going to take a different approach, and stress the two spe-
cial cases in which µ is discrete or has a density function, trying to make some connections with
other encounters you might have had with Fourier transforms.
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Inversion: Integer-valued Discrete Case

Notice that the integer-valued discrete distributions always satisfy φ(ω + 2π) = φ(ω) (and in
particular are not integrable over R), while the continuous ones satisfy |φ(ω)| → 0 as ω → ±∞.
For integer-valued random variables X we can recover pk = Pr[X = k] by inverting the Fourier
series:

φ(ω) = E[eiωX ] =
∑

pk eikω, so

pk =
1

2π

∫ π

−π

e−ikω φ(ω) dω.

Inversion: Continuous Random Variables

Now let’s turn to the case of a distribution with a density function; first two preliminaries. For
any real or complex numbers a, b, c it is easy to compute (by completing the square) that

∫ ∞

−∞
e−a−bx−cx2

dx =

√

π

c
e−a+b2/4c (1)

if c has positive real part, and otherwise the integral is infinite; in particular, for any ǫ > 0 the
function γǫ(x) ≡ 1√

2πǫ
e−x2/2ǫ satisfies

∫

γǫ(x) dx = 1 (it’s just the normal probability density

with mean 0 and variance ǫ).
Let µ(dx) = f(x)dx be any probability distribution with density function f(x) and ch.f.

φ(ω) = µ̂(ω) =
∫

eiωx f(x) dx. Then |φ(ω)| ≤ 1 so for any ǫ > 0 the function |e−iyω−ǫω2/2φ(ω)| is
integrable and we can compute

1

2π

∫

R

e−iyω−ǫω2/2φ(ω) dω =
1

2π

∫

R

e−iyω−ǫω2/2

[
∫

R

eixωf(x) dx

]

dω

=
1

2π

∫

R
2

ei(x−y)ω−ǫω2/2f(x) dx dω

=
1

2π

∫

R

[
∫

R

ei(x−y)ω−ǫω2/2 dω

]

f(x) dx (2)

=
1

2π

∫

R

[

√

2π

ǫ
e−(x−y)2/2ǫ

]

f(x) dx (3)

=
1√
2πǫ

∫

R

e−(x−y)2/2ǫf(x) dx

= γǫ ⋆ f(y) = γǫ ⋆ µ(y)

(where the interchange of orders of integration in (2) is justified by Fubini’s theorem and the cal-
culation in (3) by equation (1)), the convolution of the normal kernel γǫ(·) with f(y). This con-
verges

• uniformly to f(y) as ǫ → 0 if f(·) is bounded and continuous (the most common case),

• pointwise to f(y−)+f(y+)
2 if f(x) has a jump discontinuity at x = y, and

• to infinity if µ({y}) > 0, i.e., if Pr[X = y] > 0.
This is the Fourier Inversion Formula for f(x): we can recover the density f(x) from its Fourier
transform φ(ω) = µ̂(ω) by f(x) = 1

2π

∫

e−iωxφ(ω) dω, if that integral exists, or otherwise as the

limit f(x) = limǫ→0
1
2π

∫

e−iωx−ǫω2/2φ(ω) dω.
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There are several interesting connections between the density function f(x) and character-
istic function φ(ω). If φ(ω) “wiggles” with rate approximately ξ, i.e., if φ(ω) ≈ a cos(ωξ) +
b sin(ωξ) + c, then f(x) will have a spike at x = ξ and X will have a high probability of be-
ing close to ξ; if φ(ω) is very smooth (i.e., has well-behaved continuous derivatives of high order)
then it does not have high-frequency wiggles and f(x) falls off quickly for large |x|, so E[|X|p] <
∞ for large p. If |φ(ω)| falls off quickly as ω → ±∞ then φ(ω) doesn’t have large low-frequency
components and f(x) must be rather tame, without any spikes. Thus φ and f both capture in-
formation about the distribution, but from different perspectives. This is often useful, for the
vague descriptions of this paragraph can be made precise:

Theorem 1. If
∫

R
|µ̂(ω)| dω < ∞ then µǫ ≡ µ ⋆ γǫ converges a.s. to an L1 function f(x), µ̂ǫ(ω)

converges uniformly to f̂(ω), and µ(A) =
∫

A
f(x) dx. Also f(x) = 1

2π

∫

R
e−iωxµ̂(ω) dω for almost-

every x.

Theorem 2. For any µ and any a < b, µ
(

(a, b)
)

+ 1/2µ
(

{a, b}
)

= limT→∞
∫ T

−T
e−iωa−e−iωb

2πiω µ̂(ω) dω.

Theorem 3. If
∫

R
|x|k µ(dx) < ∞ for an integer k > 0 then µ̂(ω) has continuous derivatives of

order k given by

µ̂(k)(ω) =

∫

R

(ix)keiωx µ(dx)

Conversely, if µ̂(ω) has a derivative of finite even order k at ω = 0, then
∫

R
|x|k µ(dx) < ∞ and

EXk =
∫

R
xk µ(dx) = (−1)k/2 µ̂(k)(0).

By Theorem 3 the first few moments of the distribution, if they exist, can be determined
from derivatives of the characteristic function or its logarithm at zero: φ(0) = 1, φ′(0) = iE[X],
φ′′(0) = −E[X2], so

Mean: [log φ]
′
(0) = φ′(0)/φ(0) = iE[X] = iµ

Variance: [log φ]′′ (0) = φ′′(0)φ(0)−(φ′(0))2

φ(0)2
= −E[X2] + E[X]2 = −σ2

Etc.: [log φ]
′′′

(0) = O(E[|X|3]),
so by Taylor’s theorem, we have

log φ(ω) = 0 + iµω − σ2ω2/2 + O(ω3)

φ(ω) ≈ eiµω−σ2ω2/2+O(ω3)

Limits of Partial Sums

We’ll need to re-center and re-scale the distribution of Sn =
∑n

i=1 Xi before we can hope to make
sense of Sn’s distribution for large n, so we’ll need some facts about characteristic functions of
linear combinations of independent RV’s: for independent X and Y , and real numbers α, β, γ,

φα+βX+γY (ω) = Eeiω(α+βX+γY ) = Eeiωα
EeiωβX

EeiωγY = eiωα φX(ωβ)φY (ωγ)

In particular, for i.i.d. L2 random variables Xi with characteristic function φ(t), the normalized

sum [Sn − nµ]/
√

nσ2 has characteristic function

φS(ω) =

n
∏

j=1

[

φ(ω/
√

nσ2)e−iωµ/
√

nσ2]

=
[

φ(s)e−isµ
]n

, where s = ω/
√

nσ2

= en[log φ(s)−isµ]
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with logarithm

log φS(ω) = n[log φ(s) − isµ]

= n[0 + iµs − σ2s2/2 + O(s3)] − nisµ

= −nσ2(ω2/nσ2)/2 + O(n−1/2)

= −ω2/2 + O(n−1/2),

so φS(ω) → e−ω2/2 for all ω ∈ R and hence [Sn − nµ]/
√

nσ2 ⇒ N(0, 1), the Central Limit
Theorem.

Note: We assumed Xi were i.i.d. with finite third moment; the method of proof really only
requires E[X2] < ∞, and can be extended to the non-identically-distributed case (and even inde-
pendence can be weakened), but Sn cannot converge to a normally-distributed limit if E[X2] =
∞; ask for details (or read Glivenko & Kolmogorov) if you’re interested.

Compound Poisson Distributions

Let Xj have independent Poisson distributions with means νj and let uj ∈ R; then the ch.f. for
Y ≡ ∑

uj Xj is

φY (ω) =
∏

exp
[

νj(e
iωuj − 1)

]

= exp
[

∑

(eiωuj − 1)νj

]

= exp
[

∫

R

(eiωu − 1)ν(du)
]

for the discrete measure ν(du) that assigns mass νj to each point uj ; evidently we could take a
limit using a sequence of discrete measures that converges to a continuous measure ν(du) so long
as the integral makes sense, i.e.

∫

R
|eiωu − 1|ν(du) < ∞. This in turn will follow from the require-

ment that
∫

R
(1 ∧ |u|)ν(du) < ∞. Such a distribution is called Compound Poisson; we’ll now see

that it includes an astonishingly large set of distributions.

Distribution Log Characteristic Function

Poisson Po(λ) λ(eiω − 1) =

∫ ∞

0

(eiωu − 1)λδ1(du)

Gamma: Ga(α, β) −α log(1 − iω/β) =

∫ ∞

0

(eiωu − 1)αe−βuu−1 du

Normal: No(0, σ2) −ω2σ2/2 = limǫ→0

∫

(eiωu − 1)
σ2

ǫ2
δǫ(du) − iωσ2

ǫ

Neg Bin: NB(α, p) −α log[1 − p

q
(eiω − 1)] =

∫

(eiωu − 1)ν(du), ν(du) =

∞
∑

k=1

αpk

k
δk(du)

Cauchy: Ca(γ, 0) −γ|ω| =

∫

(eiωu − 1)ν(du), ν(du) = γ u−2 du

Stable: St(α, β, γ) −γ|ω|α[1 − iβ tan
πα

2
sgn(ω)] =

∫

(eiωu − 1)ν(du), ν(du) = cαγu−1−α du,

where cα = 2
πΓ(1+α) sin πα

2 if β = 0. Try to verify the measures ν(du) for the Negative Bino-
mial and Cauchy distributions. All these distributions share the property called infinite divisibil-

ity , that each can be written as a sum of n independent identically distributed pieces for every
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number n; in 1936 the French probabilist Paul Lévy and Russian probabilist A. Ya. Khinchine
discovered that every distribution with this property must have a ch.f. of a very slightly more
general form than that given above,

log φ(ω) = iaω − σ2

2
ω2 +

∫

R

[eiωu − 1 − iω h(u)]ν(du),

where h(u) is any bounded continuous function that acts like u for u close to zero (for example,
h(u) = arctan(u) or h(u) = sin(u) or h(u) = u/(1 + u2)). The measure ν(du) need not quite
be finite, but we must have u2 integrable near zero and 1 integrable away from zero... one way to

write this is to require that
∫

(1 ∧ u2) ν(du) < ∞, another is to require
∫

u2

1+u2 ν(du) < ∞. Some

authors consider the finite measure κ(du) = u2

1+u2 ν(du) and write

log φ(ω) = iωa +

∫

R

[eiωu − 1 − iω h(u)]
1 + u2

u2
κ(du),

where now the Gaussian component −σ2ω2

2
arises from a point mass for κ(du) of size σ2 at u = 0.

If u is locally integrable, i.e. if
∫ ǫ

−ǫ
|u| ν(du) < ∞ for some (and hence every) ǫ > 0, then the

term iω h(u) is unnecessary (it can be absorbed into iωa). This always happens if ν(R−) = 0, i.e.
if ν is concentrated on the positive half-line. Every increasing stationary independent-increment
stochastic process Xt has increments which are infinitely divisible with ν concentrated on the
positive half-line and no Gaussian component (σ2 = 0), so have the representation

log φ(ω) = iωa +

∫ ∞

0

[eiωu − 1]ν(du).

for some a ≥ 0 and some measure ν on R+ satisfying
∫ ∞
0

(1 ∧ u) ν(du) < ∞. In the Compound
Poisson example, ν(du) =

∑

νjδuj
(du) was the sum of point masses of size νj at the possible

jump magnitudes uj . This interpretation extends to help us understand all ID distributions:
every ID random variable X may be viewed as the sum of a constant, a Gaussian random vari-
able, and a compound Poisson random variable, the sum of independent Poisson jumps of sizes
u ∈ E ⊂ R with rates ν(E).

Stable Limit Laws

Let Sn = X1 + ...+Xn be the partial sum of iid random variables. IF the random variables are all
square integrable, then the Central Limit Theorem applies and necessarily Sn

nσ2 − µ =⇒ No(0, 1).
But what if each Xn is not square integrable? Denote by F (x) = P[Xn ≤ x] the common CDF of
the {Xn}.
Theorem (Stable Limit Law).

There exist constants An > 0 and Bn ∈ R and a distribution µ for which the

Sn

An
− Bn =⇒ µ

if and only if there are constants 0 < α ≤ 2, M− ≥ 0, and M+ ≥ 0, with M− + M+ > 0, such
that as x → ∞ the following limits hold for every ξ > 0:

1.
F (−x)

1 − F (x)
→ M−

M+
;

2. M+ > 0 ⇒ 1 − F (xξ)

1 − F (x)
→ ξ−α M− > 0 ⇒ F (−xξ)

F (−x)
→ ξ−α.
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In this case the limit is the Stable Distribution with index α, with characteristic function

E[eiωY ] = e
iδω − γ|ω|α[1 − iβ tan

πα

2
sgn(ω)]

,

where β = M+

M−+M+ and γ = (M− + M+). Note that the Cauchy distribution is the special
case of (α, β, γ, δ) = (1, 0, 1, 0) and the Normal distribution is the special case of (α, β, γ, δ) =
(2, 0, σ2/2, µ). Although each Stable distribution has an absolutely continuous distribution with
continuous probability density function f(y), these two cases and the “inverse Gaussian distribu-
tion” with α = 1/2 and β = ±1 are the only ones where the p.d.f. can be given in closed form.
Moments are easy enough to compute; for α < 2 the Stable distribution only has finite moments
of order p < α and, in particular, none of them has a finite variance. The Cauchy has finite mo-
ments of order p < 1 but does not have a well-defined mean.

Condition 2. says that each tail must be fall off like a power (sometimes called Pareto tails),
and the powers must be identical; Condition 1. gives the tail ratio. In a common special case,
M− = 0; for example, random variables Xn with the Pareto distribution (often used to model
income) given by P [Xn > t] = (k/t)α for t ≥ k will have a stable limit for their partial sums if
α < 2, and (by CLT) a normal limit if α ≥ 2. You can find out more details reading Chapter 9 of
Breiman’s book.

Page 7


