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We’ve already encountered and used martingales in this course to help study
the hitting-times of Markov processes. Informally a martingale is simply
a stochastic process Mt defined on some probability space (Ω,F ,P) that
is “conditionally constant,” i.e., whose predicted value at any future time
s > t is the same as its present value at the time t of prediction. The set T
of possible indices t ∈ T is usually taken to be the nonnegative integers Z+

or the nonnegative reals R+, although sometimes Z or R or other ordered
sets arise. Formally we represent what is known at time t in the form of
an increasing family (or filtration) {Ft} ⊂ F of σ-algebras, possibly those
generated by a process {Xs : s ≤ t} or even by the martingale itself, Ft =
σ{Ms : s ≤ t}, and require that E|Mt| < ∞ for each t (so the conditional
expectation below is well-defined) and that

Mt = E[Ms | Ft], t < s.

In particular, {Mt} is adapted to {Ft}, i.e., Mt is Ft-measurable for each
t. For integer-time processes (like functions of the Markov chains we looked
at before) it is only necessary to take s = t + 1, and usually we take Ft =
σ[Xi : i ≤ t] and write

Mt = E[Mt+1 | X0, ...,Xt].

There are several “big theorems” about martingales that make them useful
in statistics and probability theory. Most of them are simple to prove for
discrete time T = Z+, and more challenging for continuous time T = R+.
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1. Optional Stopping Theorem:

If τ is a stopping time or Markov time, i.e., a random time that “doesn’t
depend on the future” (technically the requirement is that the event [τ ≤ t]
should be in Ft for each t), and if Mt is a martingale, then Mt∧τ is a
martingale too. The proof is easy for integer-time martingales:

E[M(t+1)∧τ | Ft] = E[Mτ1[τ≤t] + Mt+11[τ>t] | Ft]

= Mτ1[τ≤t] + 1[τ>t]E[Mt+1 | Ft]

= Mτ1[τ≤t] + 1[τ>t]Mt

= Mt∧τ

2. Martingale Path Regularity:

If Mt is a martingale and a < b are real numbers, denote by ν
(t)
[a,b] the number

of “upcrossings” of the interval [a, b] by Ms prior to time t, the number of
times it passes from below a to above b; then:

E[ν
(t)
[a,b]] ≤

E|Mt| + |a|

b − a

and, in particular, martingale paths don’t oscillate infinitely often— thus
they have left and right limits at every point. This is also the key lemma
for proving the Martingale Convergence Theorem below. Here’s the idea,
attributed to both Doob and to Snell:

Set β0 = 0 and, for n ∈ N, define

αn = inf{t > βn−1 : Mt ≤ a}

βn = inf{t > αn : Mt ≥ b},

or infinity if the indicated event never occurs (i.e., we take inf{∅} = ∞).
Define a process Yt by

Yt =
∑

n∈N

[Mt∧βn
− Mt∧αn

].

Starting with the first time α1 that Mt ≤ a, Yt accumulates the increments
of Mt until the first time β1 that Mt ≥ b; the process continues if the
martingale Mt ≤ a again falls below a (at time α2), and so forth. All the
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terms vanish for n large enough that αn > t, so there are at most 1 + ν
(t)
[a,b]

non-zero terms. Then

Yt =
∑

n∈N

[Mt∧βn
− Mt∧αn

]

≥ (b − a)ν
(t)
[a,b] + [Mt − a]

EYt ≥ (b − a)Eν
(t)
[a,b] + E[Mt − a]

≥ (b − a)Eν
(t)
[a,b] − E(Mt − a)−

≥ (b − a)Eν
(t)
[a,b] − E|Mt| − |a|.

By the Optional Stopping Theorem, Yt is a martingale and hence EYt =

EY0 = 0; it follows that Eν
(t)
[a,b] ≤

(

E|Mt| + |a|
)

/(b − a).

The important conclusion is that Eν
(t)
[a,b] < ∞. If Mt is uniformly bounded

in L1, E|Mt| ≤ c < ∞ for all t ∈ T , then by Fatou’s lemma we even have

Eν
(∞)
[a,b] ≤ [c + |a|]/(b − a) < ∞, so the number of times ν

(∞)
[a,b] < ∞ that Mt

ever crosses the interval [a, b] is almost-surely finite— leading to

Theorem 1 (Martingale Path Regularity) Let M0
t be a martingale with

index set T = R+. Then with probability one, M0
t has limits from the left

and from the right at every point t ∈ T , and at each t is almost-surely
equal to the right-continuous process Mt ≡ limsցt M0

s . If the filtration is
right-continuous, Ft = ∩s>tFs, then Mt is also a martingale.

The upcrossing lemma is also the key result needed for proving

3. Martingale Convergence Theorems:

Theorem 2 (Martingale Convergence Theorem) Let Mt be a martin-
gale satisfying E|Mt| ≤ c < ∞ for all t ∈ T . Then there exists a random
variable M∞ ∈ L1 such that Mt → M∞ a.s. as t → ∞. If {Mt} is Uni-
formly Integrable (for example, if E|Mt|

p ≤ cp < ∞ for some p > 1), then
also Mt → M∞ in L1.

Proof. Define M∞ ≡ lim inft→∞ Mt and M∞ ≡ lim supt→∞ Mt, and
suppose (for contradiction) that P[M∞ = M∞] < 1. Then there exist

numbers a < b for which 0 < P[M∞ < a < b < M∞]. But ν
(∞)
[a,b] = ∞ on the
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event [M∞ < a < b < M∞], contradicting Eν
(∞)
[a,b] ≤

(

c + |a|
)

/(b − a) < ∞.
The result about UI martingales now follows by the UI convergence theorem.

Corollary 1 Let Mt be a martingale and τ a stopping time. Then

EM0 = EMτ

if either {Mt} is uniformly integrable, or if |Ms − Mt| ≤ c|s − t| for some
c < ∞ and Eτ < ∞.

Proof. Obviously Mτ = limt→∞ Mt∧τ a.s.; the family {Mt∧τ } will be UI
under either of the stated conditions.

Note that some condition is necessary in the Corollary above. The simple
symmetric random walk S0 = 0, Sn+1 = Sn±1 (with probability 1/2 each) is
a martingale, and τ ≡ inf{t : St = 1} is a stopping time that is almost-surely
finite, but

E[Sτ ] = 1 6= 0 = E[S0]

so the conclusion of Corollary 1 fails. Note that Sn is not UI here, and
|Ss − St| ≤ |s − t| is linearly bounded, but Eτ = ∞. For another example,
let X ∼ Ge(1

2) be a geometric random variable with P[X = x] = 2−x−1 for
x ∈ Z+, and set Mt ≡ 2t1{X≥t}; then Mt is a martingale starting at M0 = 1,
τ = X + 1 = inf{t : Mt = 0} is a stopping time with finite expectation
E[τ ] = 2, but

E[Mτ ] = 0 6= 1 = E[M0].

Again Mt is not UI, and this time Eτ < ∞ but |Ms − Mt| is not bounded
linearly in |s − t|.

Theorem 3 (Backwards Martingale Convergence Theorem) Let {Mt}
be a martingale indexed by Z or R (or just the negative half-line Z− or
R−). Then, without any further conditions, there exists a random variable
M−∞ ∈ L1(Ω,F ,P) such that

lim
t→−∞

Mt = M−∞ a.s. and in L1(Ω,F ,P).

The strong law of large numbers for i.i.d. L1 random variables Xn is a
corollary— for n ∈ N, define Sn =

∑n
j=1 Xj and M−n = X̄n = Sn/n; verify
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that Mt is a martingale for the filtration Ft = σ{Ms : s ≤ t} (note Xn

is F−n+1-measurable but not F−n-measurable), and that M−∞ is in the
tail field and hence (by Kolmogorov’s 0/1 law) is almost-surely constant,
evidently µ, so Xn → µ a.s. as n → ∞.

4. Martingale Problem for Continuous-Time Markov Chains:

Let Qt
jk be a (possibly time-dependent) Markov transition matrix on a state

space S. Then an S-valued process Xt is a Markov chain with transition
matrix Qjk(t) if and only if, for all bounded functions φ : S → R, the process

Mφ(t) = φ(Xt) − φ(X0) −

∫ t

0

[

∑

j 6=i=Xs

Qs
ij [φ(j) − φ(i)]

]

ds

is a martingale. Similar characterizations apply to discrete-time Markov
chains and to continuous-time Markov processes with non-discrete state
space S. This is the most powerful and general way known for constructing
Markov processes.

5. Maximal Inequalities:

Under mild conditions, the suprema of martingales over finite and even
infinite intervals may be bounded; this makes them extremely useful for
bounding the growth of processes. The usual bounds are of two kinds:
bounds on the probability that a martingale Mt (or its absolute value |Mt|)
exceeds a fixed number λ ∈ R in some prescribed time interval, and bounds
on the expectation of the supremum of |Mt|

p over some interval, for real
numbers p ≥ 1. Here are a few illustrative results.

Theorem 4 Let Mt be a martingale and let t ∈ T . Then for any λ > 0,

P

[

sup
0≤s≤t

Ms ≥ λ

]

≤ λ−1
EM+

t

P

[

sup
0≤s≤t

|Ms| ≥ λ

]

≤ λ−1
E|Mt|
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Proof. Let τ = inf{t ≥ 0 : Mt ≥ λ}. Since both Mt and Mt∧τ are
martingales,

EMt = EMt∧τ

= E
{

Mτ1[τ≤t] + Mt1[τ>t]

}

≥ E
{

λ1[τ≤t] + Mt1[τ>t]

}

= λP[τ ≤ t] + E
{

Mt1[τ>t]

}

, so

E[Mt1[τ≤t]] ≥ λP[τ ≤ t] and hence

P

{

sup
0≤s≤t

Ms ≥ λ

}

= P[τ ≤ t]

≤ λ−1
E[Mt1[τ≤t]]

≤ λ−1
E[M+

t 1[τ≤t]]

≤ λ−1
E[M+

t ],

proving the first assertion. Since −Mt is also a martingale, we also have:

P

{

inf
0≤s≤t

Ms ≤ −λ

}

≤ λ−1
E[M−

t ]; adding these together,

P

{

sup
0≤s≤t

|Ms| ≥ λ

}

≤ λ−1
E[|Mt|].

In fact we proved something slightly stronger (which we’ll need below). Set
M∗

t ≡ sup0≤s≤t |Ms|; then

P {M∗
t ≥ λ} ≤ λ−1

E

[

|Mt|1{M∗

t
≥λ}

]

. (1)

Theorem 5 For any martingale Mt and any real number p > 1,

E[sup
s≤t

|Ms|
p] ≤

(

p

p − 1

)p

sup
s≤t

E[|Ms|
p].

Proof.
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Set q = p/(p − 1), the conjugate exponent, so 1
p + 1

q = 1. By Fubini’s
theorem,

E(M∗
t )p =

∫ ∞

0
pλp−1

P[M∗
t ≥ λ] dλ

≤

∫ ∞

0
pλp−1 λ−1

E

[

|Mt|1{M∗

t
≥λ}

]

dλ

= E

∫ M∗

t

0
pλp−2 |Mt| dλ

=
p

p − 1
E
(

M∗
t )p−1|Mt|

Hölder’s inequality asserts that E[Y Z] ≤ {EY p}1/p {EZq}1/q for any non-
negative random variables Y and Z; applying this with Y = |Mt| and
Z = (M∗

t )p−1, and noting (p − 1)q = p, we get

E(M∗
t )p ≤

p

p − 1
E

{(

M∗
t )p

}1/q
E {|Mt|

p}1/p

≤

(

p

p − 1

)p

E|Mt|
p.

Note that the bound blows up as p → 1; to achieve a bound on EM∗
t we

need something slightly stronger than a bound on E|Mt| (see below).

In summary: if Mt is a martingale and if t ∈ T then

P[sup
s≤t

Ms ≥ λ] ≤ λ−1
E[M+

t ]

P[min
s≤t

Ms ≤ −λ] ≤ λ−1
E[M−

t ]

P[sup
s≤t

|Ms| ≥ λ] ≤ λ−1
E|Mt|

E sup
s≤t

|Ms|
p ≤ qp sup

s≤t
E[|Ms|

p] = qp
E[|Mt|

p] (p > 1)

E sup
s≤t

|Ms| ≤
e

e − 1
sup
s≤t

E[|Ms| log
+(|Ms|)] (p = 1)

6. Doob’s Martingale:

Fix any Y ∈ L1(Ω,F ,P) and set Mt = E[Y | Ft], the best prediction of Y
available at time t. Then Mt is a uniformly-integrable martingale.
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7. Summary:

To summarize, martingales are important because:

1. They have close connections with Markov processes;

2. Their expectations at stopping times are easy to compute;

3. They offer a tool for bounding the maximum and minimum of pro-
cesses;

4. They offer a tool for establishing path regularity of processes;

5. They offer a tool for establishing the a.s. convergence of certain ran-
dom sequences;

6. They are important for modeling economic and statistical time series
which are, in some sense, predictions.

Examples:

1. Partial sums Sn = Σn
i=1 Xi of independent mean-zero RV’s

2. Stochastic Integrals. For example: let Mn be your “fortune” at time
n in a gambling game, and let Xn be an IID Bernoulli sequence with
probability EXn = p. Preceding each time n + 1 ∈ N you may bet any
fraction Fn you like of your (current) fortune Mn on the upcoming
Bernoulli event Xn+1, at odds (p : 1−p); your new fortune after that
bet will be Mn+1 = Mn(1 − Fn) if you lose (i.e., if Xn+1 = 0), and
Mn+1 = Mn(1 + Fn

1−p
p ) if you win (i.e., if Xn+1 = 1), or in general

Mn+1 = Mn(1−Fn(1−Xn+1/p)). If Fn ∈ σ{X1 · · ·Xn}, then E[Mn+1 |
Fn] = Mn and Mn is a martingale. Note that

Mn = M0 +
n−1
∑

i=0

FiMi[Yi+1 − Yi]

for the martingale Yn = (Sn − np)/p.

3. Variance of a Sum: Mn =
(
∑n

i=1 Yi

)2
− nσ2, where EYiYj = σ2δij
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4. Radon-Nikodym Derivatives:

Mn(ω) = 2−n

∫ (i+1)/2n

i/2n

f(x) dx, i = ⌊2nω⌋

→ M∞(ω) = f(ω) a.s.

5. Leftovers:

• Submartingales: E[X+
t ] < ∞, E[Xs | Ft] ≥ Xt, Xt ∈ Ft.

• Jensen’s inequality: if Mt is a martingale and if φ convex with
E[φ(Mt)

+] < ∞, then Xt = φ(Mt) is a submartingale.

• Supermartingales: If Xt is a submartingale then Yt = −Xt is a
supermartingale, satisfying E[Ys | Ft] ≤ Yt.

• Most of the bounds and convergence theorems above extend to
sub- or super- martingales.
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