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Let µ and λ be two positive bounded measures on the same meaurable space (Ω,F). We call µ
and λ equivalent, and write µ ≡ λ, if they have the same null sets— so, if they were probability
measures, the notion of “a.s.” would be the same for both. More generally, we call λ absolutely

continuous (AC) w.r.t. µ, and write λ ≪ µ, if µ(A) = 0 implies λ(A) = 0, i.e., if every µ-null set
is also λ-null. We call µ and λ mutually singular, and write µ ⊥ λ, if for some set A ∈ F we have
µ(Ac) = 0 and λ(A) = 0, so µ and λ are “concentrated” on disjoint sets.

For example— if λ(A) =
∫

A f(x)µ(dx) for some non-negative function f ∈ L1(Ω,F , µ) then λ ≪ µ;
if f > 0 µ-a.s., then also µ(A) =

∫

A f(x)−1λ(dx) and µ ≡ µ. If for some other measure ν and some
f, g ∈ L1(Ω,F , ν) with

µ(A) =

∫

A
f(x)ν(dx) λ(A) =

∫

A
g(x)ν(dx)

then µ ⊥ λ if f(x)g(x) = 0 for ν-a.e. x ∈ Ω.

Theorem 1 (Lebesgue Decomposition) There exist a unique pair of measures λa, λs on (Ω,F)
and a unique function Y ∈ L1(Ω,F , µ) such that:

λ = λa + λs

λa ≪ µ, λs ⊥ µ

λa(A) =

∫

A
Y (ω)µ(dω), A ∈ F .

Corollary 1 (Radon-Nikodym Theorem) Let (Ω,F ,P) be a probability space, X ∈ L1(Ω,F ,P),
and G ⊂ F a sub-σ-algebra. Then there exists a unique Y ∈ L1(Ω,F ,P), which we will denote

Y = E[X | G] and call the “conditional expectation of X, given G,” that satisfies:

E(Y − X)1G = 0, G ∈ G

Proof. First take X to be non-negative, X ≥ 0. Define a measure λ on G (not on all of F) given
by

λ(G) = EX 1G =

∫

G
X(ω)P(dω).

This is bounded (since X ∈ L1(Ω,F ,P)) and positive (since X ≥ 0), so by RN we can write
λ = λa + λs with λa ≪ P, λs ⊥ P, and λa(G) =

∫

G Y dP for some Y ∈ L1(Ω,G,P). But λ ≪ P by
construction, so λs = 0 and the Corollary follows.
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For general X, consider separately the positive and negative parts X+ = max(X, 0) and X− =
max(−X, 0) and set Y = Y+ − Y−.

Example: If G = σ{Λn} for any finite or countable partition {Λn} ⊂ F (so Λm∩Λn = ∅ for m 6= n
and Ω = ∪Λn), then for any X ∈ L1(Ω,F ,P),

E[X | G] =
∑

1Λn
EΛn

[X] =
∑

1Λn
(ω)

1

P[Λn]
E[X 1Λn

],

constant on partition elements and equal there to the P-weighted average value of X.

In particular— let (Ω,F ,P) be the unit interval with Lebesgue measure, and let Gn = σ{(i/2n, j/2n]},
0 ≤ i < j ≤ 2n. Note that Gn ⊂ Gm for n ≤ m and that F =

∨

Gn. Then for any X ∈ L1(Ω,F ,P),

Xn = E[X | Gn] = 2n

∫ (i+1)/2n

i/2n

X dP, i/2n < ω ≤ (i + 1)/2n.

This is our first example of a margingale, a sequence of random variables Xn ∈ L1(Ω,F ,P) with
the property that Xn = E[Xm | Gn] for n ≤ m; we’ll see more soon. What happens as n → ∞?

Properties:

• If X = 1A and if G = σ{B} for some A,B ∈ F , then

E[1A | σ(B)](ω) =

{

P[A ∩ B]/P[B] ω ∈ B

P[A ∩ Bc]/P[Bc] ω /∈ B

Thus, conditional expectation (given a σ-algebra G) generalizes the elementary notion of
contional probability (given an event B).

• More generally, If X ∈ L1 and if G = σ{Gi} for some (finite or countable) measurable partition
{Gi} ⊂ F , then

E[X | G](ω) =
∑

1Gi
(ω)

1

P(Gi)

∫

Gi

X(ω)P (dω),

the weighted average of X over the partition element that contains ω.

• If X,Y ∼ f(x, y) are jointly absolutely-continuous and if G = σ(Y ),

E[X | σ(Y )] =

∫

xf(x, Y ) dx
∫

f(x, Y ) dx
.

Thus, conditional expectation (given a σ-algebra G) generalizes the elementary notion of
contional expectation (given an RV Y ). What if X and Y are both discrete? What if just
one is discrete? What if Y is a vector?

To prove this property, first show that any event G is σ(Y )-measurable if and only if 1G = φ(Y )
a.s. for some Borel measurable φ (use a π − λ argument), then extend from 1G to arbitrary
σ(Y )-measurable random variables.
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• If X ∈ L1(Ω,F ,P) and if X ⊥⊥ G then

E[X | G] = EX

In particular, E[X | {Ω, ∅}] = EX. Thus, conditional expectation (given a σ-algebra G)
generalizes the elementary notion of expectation.

• If X ∈ L1(Ω,F ,P) and if G ⊂ H ⊂ F , then

E[X | G] = E
[

E[X | H]
∣

∣ G
]

This is called the “tower” property of conditional expectation.

• If X ∈ L2(Ω,F ,P) and {Yn} ⊂ L2(Ω,F ,P) and if X and {Yn} are jointly Gaussian then
E[X | σ{Yn}] is the orthogonal projection of X onto the linear span of {Yn} in the Hilbert
space L2(Ω,F ,P). Thus, conditional expectation (given a σ-algebra G) generalizes the no-
tion of orthogonal projection. This is the best way to compute conditional expectations in
multivariate normal examples.

• Let {Xn}
iid
∼ L1(Ω,F ,P) with means µ = E[Xn] and set Sn =

∑

j≤n Xj , Gn = σ{X1, ...,Xn}.
Then for n < m,

E[Sm | Gn] = Sn + (m − n)µ;

in particular, then Sn is another martingale if µ = 0. If σ2 = VXn < ∞, check that
(Sn − nµ)2 − nσ2 is a martingale.

• All the usual integration tools and inequalities— DCT, MCT, Fatou, Jensen, Hölder and
Minkowski, Markov, Chebychev, etc.— hold for conditional expecatations as well.
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