Conditional Expectation

Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA

Let μ and λ be two positive bounded measures on the same meaurable space (Ω, \mathcal{F}) . We call μ and λ equivalent, and write $\mu \equiv \lambda$, if they have the same null sets— so, if they were probability measures, the notion of "a.s." would be the same for both. More generally, we call λ absolutely continuous (AC) w.r.t. μ , and write $\lambda \ll \mu$, if $\mu(A) = 0$ implies $\lambda(A) = 0$, *i.e.*, if every μ -null set is also λ -null. We call μ and λ mutually singular, and write $\mu \perp \lambda$, if for some set $A \in \mathcal{F}$ we have $\mu(A^c) = 0$ and $\lambda(A) = 0$, so μ and λ are "concentrated" on disjoint sets.

For example— if $\lambda(A) = \int_A f(x)\mu(dx)$ for some non-negative function $f \in L_1(\Omega, \mathcal{F}, \mu)$ then $\lambda \ll \mu$; if f > 0 μ -a.s., then also $\mu(A) = \int_A f(x)^{-1}\lambda(dx)$ and $\mu \equiv \mu$. If for some other measure ν and some $f, g \in L_1(\Omega, \mathcal{F}, \nu)$ with

$$\mu(A) = \int_A f(x)\nu(dx) \qquad \lambda(A) = \int_A g(x)\nu(dx)$$

then $\mu \perp \lambda$ if f(x)g(x) = 0 for ν -a.e. $x \in \Omega$.

Theorem 1 (Lebesgue Decomposition) There exist a unique pair of measures λ_a , λ_s on (Ω, \mathcal{F}) and a unique function $Y \in L_1(\Omega, \mathcal{F}, \mu)$ such that:

$$\lambda = \lambda_a + \lambda_s$$

$$\lambda_a \ll \mu, \quad \lambda_s \perp \mu$$

$$\lambda_a(A) = \int_A Y(\omega)\mu(d\omega), \quad A \in \mathcal{F}.$$

Corollary 1 (Radon-Nikodym Theorem) Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space, $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$, and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. Then there exists a unique $Y \in L_1(\Omega, \mathcal{F}, \mathsf{P})$, which we will denote $Y = \mathsf{E}[X \mid \mathcal{G}]$ and call the "conditional expectation of X, given \mathcal{G} ," that satisfies:

$$\mathsf{E}(Y-X)\mathbf{1}_G = 0, \qquad G \in \mathcal{G}$$

Proof. First take X to be non-negative, $X \ge 0$. Define a measure λ on \mathcal{G} (not on all of \mathcal{F}) given by

$$\lambda(G) = \mathsf{E}X \, \mathbf{1}_G = \int_G X(\omega) \, \mathsf{P}(d\omega).$$

This is bounded (since $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$) and positive (since $X \ge 0$), so by RN we can write $\lambda = \lambda_a + \lambda_s$ with $\lambda_a \ll \mathsf{P}$, $\lambda_s \perp \mathsf{P}$, and $\lambda_a(G) = \int_G Y d\mathsf{P}$ for some $Y \in L_1(\Omega, \mathcal{G}, \mathsf{P})$. But $\lambda \ll \mathsf{P}$ by construction, so $\lambda_s = 0$ and the Corollary follows.

For general X, consider separately the positive and negative parts $X_+ = \max(X, 0)$ and $X_- = \max(-X, 0)$ and set $Y = Y_+ - Y_-$.

Example: If $\mathcal{G} = \sigma\{\Lambda_n\}$ for any finite or countable partition $\{\Lambda_n\} \subset \mathcal{F}$ (so $\Lambda_m \cap \Lambda_n = \emptyset$ for $m \neq n$ and $\Omega = \cup \Lambda_n$), then for any $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$,

$$\mathsf{E}[X \mid \mathcal{G}] = \sum \mathbf{1}_{\Lambda_n} \mathsf{E}_{\Lambda_n}[X] = \sum \mathbf{1}_{\Lambda_n}(\omega) \frac{1}{\mathsf{P}[\Lambda_n]} \mathsf{E}[X \mid \Lambda_n],$$

constant on partition elements and equal there to the P-weighted average value of X.

In particular—let $(\Omega, \mathcal{F}, \mathsf{P})$ be the unit interval with Lebesgue measure, and let $\mathcal{G}_n = \sigma\{(i/2^n, j/2^n)\}, 0 \le i < j \le 2^n$. Note that $\mathcal{G}_n \subset \mathcal{G}_m$ for $n \le m$ and that $\mathcal{F} = \bigvee \mathcal{G}_n$. Then for any $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$,

$$X_n = \mathsf{E}[X \mid \mathcal{G}_n] = 2^n \int_{i/2^n}^{(i+1)/2^n} X \, d\mathsf{P}, \qquad i/2^n < \omega \le (i+1)/2^n.$$

This is our first example of a margingale, a sequence of random variables $X_n \in L_1(\Omega, \mathcal{F}, \mathsf{P})$ with the property that $X_n = \mathsf{E}[X_m | \mathcal{G}_n]$ for $n \leq m$; we'll see more soon. What happens as $n \to \infty$? **Properties**:

• If $X = 1_A$ and if $\mathcal{G} = \sigma\{B\}$ for some $A, B \in \mathcal{F}$, then

$$\mathsf{E}[1_A \mid \sigma(B)](\omega) = \begin{cases} \mathsf{P}[A \cap B] / \mathsf{P}[B] & \omega \in B \\ \mathsf{P}[A \cap B^c] / \mathsf{P}[B^c] & \omega \notin B \end{cases}$$

Thus, conditional expectation (given a σ -algebra \mathcal{G}) generalizes the elementary notion of contional probability (given an event B).

• More generally, If $X \in L_1$ and if $\mathcal{G} = \sigma\{G_i\}$ for some (finite or countable) measurable partition $\{G_i\} \subset \mathcal{F}$, then

$$\mathsf{E}[X \mid \mathcal{G}](\omega) = \sum \mathbf{1}_{G_i}(\omega) \frac{1}{\mathsf{P}(G_i)} \int_{G_i} X(\omega) P(d\omega),$$

the weighted average of X over the partition element that contains ω .

• If $X, Y \sim f(x, y)$ are jointly absolutely-continuous and if $\mathcal{G} = \sigma(Y)$,

$$\mathsf{E}[X \mid \sigma(Y)] = \frac{\int x f(x, Y) \, dx}{\int f(x, Y) \, dx}.$$

Thus, conditional expectation (given a σ -algebra \mathcal{G}) generalizes the elementary notion of contional expectation (given an RV Y). What if X and Y are both discrete? What if just one is discrete? What if Y is a vector?

To prove this property, first show that any event G is $\sigma(Y)$ -measurable if and only if $1_G = \phi(Y)$ a.s. for some Borel measurable ϕ (use a $\pi - \lambda$ argument), then extend from 1_G to arbitrary $\sigma(Y)$ -measurable random variables. • If $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$ and if $X \perp \mathcal{G}$ then

$$\mathsf{E}[X \mid \mathcal{G}] = \mathsf{E}X$$

In particular, $\mathsf{E}[X \mid \{\Omega, \emptyset\}] = \mathsf{E}X$. Thus, conditional expectation (given a σ -algebra \mathcal{G}) generalizes the elementary notion of expectation.

• If $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$ and if $\mathcal{G} \subset \mathcal{H} \subset \mathcal{F}$, then

$$\mathsf{E}[X \mid \mathcal{G}] = \mathsf{E}\big[\mathsf{E}[X \mid \mathcal{H}] \mid \mathcal{G}\big]$$

This is called the "tower" property of conditional expectation.

- If $X \in L_2(\Omega, \mathcal{F}, \mathsf{P})$ and $\{Y_n\} \subset L_2(\Omega, \mathcal{F}, \mathsf{P})$ and if X and $\{Y_n\}$ are jointly Gaussian then $\mathsf{E}[X \mid \sigma\{Y_n\}]$ is the orthogonal projection of X onto the linear span of $\{Y_n\}$ in the Hilbert space $L_2(\Omega, \mathcal{F}, \mathsf{P})$. Thus, conditional expectation (given a σ -algebra \mathcal{G}) generalizes the notion of orthogonal projection. This is the best way to compute conditional expectations in multivariate normal examples.
- Let $\{X_n\} \stackrel{\text{iid}}{\sim} L_1(\Omega, \mathcal{F}, \mathsf{P})$ with means $\mu = \mathsf{E}[X_n]$ and set $S_n = \sum_{j \leq n} X_j$, $\mathcal{G}_n = \sigma\{X_1, ..., X_n\}$. Then for n < m,

$$\mathsf{E}[S_m \mid \mathcal{G}_n] = S_n + (m-n)\mu;$$

in particular, then S_n is another martingale if $\mu = 0$. If $\sigma^2 = VX_n < \infty$, check that $(S_n - n\mu)^2 - n\sigma^2$ is a martingale.

• All the usual integration tools and inequalities— DCT, MCT, Fatou, Jensen, Hölder and Minkowski, Markov, Chebychev, *etc.*— hold for *conditional* expectations as well.