
STA 205 Week 2

Construction & Extension of Measures

For any finite set Ω = {ω1, ..., ωn}, the “power set” P(Ω) has |P| = 2n elements; it can also
be identified with the set of all possible functions a : Ω → {0, 1} by the relation A = {ω : a(ω) =
1}. Set theorists denote the power set by P(Ω) = {0, 1}Ω or more simply by 2Ω, even for infinite
sets Ω. Last time we considered a number of properties classes of sets A ⊂ 2Ω might have. A
class A of subsets of Ω is called a:

FIELD if Ω ∈ A, Ec ∈ A whenever E ∈ A, and E1 ∪ E2 ∈ A whenever
E1, E2 ∈ A;

SIGMA FIELD if Ω ∈ A, Ec ∈ A whenever E ∈ A, and ∪∞

i=1Ei ∈ A whenever
Ei ∈ A, i ∈ N;

π-SYSTEM if E1 ∩ E2 ∈ A whenever E1, E2 ∈ A;

λ-SYSTEM if Ω ∈ A, Ec ∈ A whenever E ∈ A, and ∪∞

i=1Ei ∈ A whenever
Ei ∩ Ej = ∅ and Ei ∈ A for all i 6= j ∈ N.

Note that if Aα is a (F, σF, π−S, resp. λ−S) for each α in any index set (even an uncount-
able one), then ∩αAα is also a (F, σF, π−S, resp. λ−S) (Exercise: show that this is not true for
even finite unions). Since also 2Ω is a (F, σF, π−S, resp. λ−S), it follows that for any collection
A0 ⊂ 2Ω there exists a smallest (F, σF, π−S, resp. λ−S): namely, the intersection of all (F, σF,
π−S, resp. λ−S)’s containing A0. We denote the smallest (F, σF, π−S, resp. λ−S) containing
A0 by F(A0), σ(A0), π(A0), and λ(A0), respectively.

For example, if Ω is arbitrary and A0 = { {ω} : ω ∈ Ω}, the singletons, then F(A0) =
σ(A0) = 2Ω if Ω is finite, but F(A0) is the finite and co-finite sets, σ(A0) the countable and co-
countable sets if Ω is infinite. π(A0) is just A0 itself— what is λ(A0)?

For probability and measure theory we need probabilities to be defined for all sets in a sigma
field F , so we can compute probabilities for countable unions and intersections; we’d like the lux-
ury of defining the measure on a much smaller collection, either a field F0 or a collection of sets
A that generates a field F0 = F(A). To do this we need to know that, subject to some obvious
consistency conditions, we can always extend a pre-measure µ0 defined only on a field F0 to some

measure µ on the sigma field F = σ(F0), and we need to prove that this µ is unique—i.e. that, if
µ1 and µ2 are two measures on F such that µ1(F ) = µ2(F ) for F ∈ F0, then also µ1(F ) = µ2(F )
for F ∈ F , i.e., µ1 and µ2 agree on the entire sigma field.

It turns out to be easier to show that µ0 extends uniquely to the λ-system λ(A0) than it is
to show unique extension to the sigma field σ(A0); luckily, when A0 is a field (or even just a π-
system), these are the same:

Theorem (Dynkin’s π-λ Theorem). Let F0 be a π-system; then λ(F0) = σ(F0). (Sketch
proof).

How can we specify µ0 on a field F0? Two examples:

1. A = { {ω} }: Given any {ωi} and {pi ≥ 0} with
∑

i pi = 1, set µ0(A) =
∑

[pi : ωi ∈ A].
In fact, this is also µ; it’s the only kind of discrete measure there is, and the only kind on a
finite or countable set Ω.

2. Ω = (−∞,∞), and A = {(−∞, b]} for b ∈ Q. Now F0 = F(A) consists of finite dis-
joint unions of left-open rational intervals (a, b], including semi-infinite intervals of the form
(−∞, b] and (a,∞), and Ω = (−∞,∞). The sigma field σ(A) is not just countable unions of
such sets; it is called the “Borel sets” in the real line, and includes all open and closed sets,
the Cantor set, and many others. It can be constructed explicitly by transfinite induction
(!), but is not easily described. It is not every possible subset of R, but it includes every set
of real numbers we’ll need in this course.
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Given any DF F (x) (i.e., right-continuous non-decreasing function on R with F (x) → 0 as
x → −∞, F (x) → 1 as x → +∞), we can define a pre-pm µ0 on A by setting µ0((−∞, b]) ≡
F (b). If F = Fd is purely discontinuous this just assigns probability pi = F (xi) − F (xi−)
to each xi where F (x) jumps; if F (x) = Fac =

∫ x

−∞
f(t) dt is absolutely continuous this just

assigns probability µ(A) =
∫

A
f(t) dt to A (and in fact this is the usual definition of that

integral!)
How does the extension idea work? Usually we’ll start with a pre-measure µ0 defined on a π-
system P. Note that we can always extend it uniquely to the field F0 := F(P) generated by P,
since F0 consists precisely of all finite unions

∪m
i=1 ∩

ni

j=1 Aij ,

where for each pair (i, j) either Aij ∈ P or Ac
ij ∈ P, and where the m sets {Bi := ∩ni

j=1Aij , 1 ≤
i ≤ m}, are disjoint. (Proving this is a homework exercise). Using the inclusion-exclusion princi-
ple you can show that µ0 is uniquely determined on each of the {Bi}, and hence on all of F0.

Now suppose µ0 is defined on a field F0, and F = σ(F0). Define two new set functions µ∗

and µ∗ on all subsets of Ω, i.e. on 2Ω, by:

µ∗(E) ≡ inf
[

∞
∑

i=0

µ0(Fi) : E ⊂
∞
⋃

i=0

Fi, Fi ∈ F0

]

µ∗(E) ≡ 1 − µ∗(Ec)

On reflection it’s clear that µ∗(E) ≤ µ∗(E) for each set E ∈ 2Ω, and µ∗(E) = µ0(E) = µ∗(E)
for each set E ∈ F0; thus there is an obvious well-defined extension of µ0 to a set function on
the µ-completion, F

µ
= {E ∈ 2Ω : µ∗(E) = µ∗(E)} = {E ∈ 2Ω : µ∗(E) + µ∗(Ec) = 1}.

It remains to show that: (1) The extension µ is nonnegative and countably additive on F
µ

(an
ǫ/2n argument); and (2) The σ field F = σ(F0) is contained in F

µ
(just show that F

µ
is a σF

containing F0); and (3) The extension to F is unique (show that for any two extensions µ1 and
µ2, {E ∈ F : µ1(E) = µ2(E)} is a λ-S containing F0). For details, see Billingsley (1995), pp. 38–
41 or Resnick (1998), pp. 42–50.

Examples:
Let Ω = N be the natural numbers {1, 2, 3, ...}, E and Ec the even and odd ones respectively,

and set

F = ∪∞

k=0{2
2k + 1, ..., 22k+1} = {2, 5, ..., 8, 17, ..., 32, 65, ..., 128, , 257, ..., 512, ...}

and notice that:
1. For n = 22k, the ratio Pn(F ) = #[F ∩ {1, ..., n}]/n is exactly Pn(F ) = (n − 1)/3n, approx-

imately 1/3, while for n = 22k+1 it is Pn(F ) = (2n − 1)/3n, approximately 2/3; thus Pn(F )
cannot possibly converge as n → ∞;

2. The even and odd portions of F and F c, respectively, A ≡ F ∩E and B ≡ F c∩Ec, both have
relative frequencies ranging from 1/6 to 1/3, which also cannot converge— in fact, A = F∩E
is exactly the same as the set 2 ∗ (F c), while B = F c ∩ Ec is exactly the same as the set
{1} ∪ (2 ∗ F − 1);

3. C ≡ (A ∪ B) however DOES have an asymptotic frequency— in fact, P2n(C) = 1/2 + 1/2n
for every n, so Pn(C) → 1/2 as n → ∞;

4. Thus E and C both have well-defined asymptotic frequencies (both are 1/2), but A = E ∩ C
does not. Thus, the collection of sets S for which limn→∞ Pn(S) converges is not a field.
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In Example 2. above we constructed a measure µ on the σ-algebra F = σ(F0) generated by
a field F0 of subsets of the real line Ω = R. The same approach works more generally, starting
with a set assignment µ0 on a field F0 or (slightly more generally) on a “semi-algebra” A, a π-
system containing Ω for which the complement Ac of each A ∈ A can be expressed as a finite
disjoint union Ac = ∪Bj of elements Bj ∈ A (example: intervals (a, b] ⊂ R, with a < b ∈ Q;
rectangles (a, b] × (c, d] ⊂ R2 or, more generally, parallelapipeds

∏

j(aj , bj ] ⊂ Rn). Any set
function µ0 : A → R satisfying (1) µ0(A) ≥ 0, (2) µ0(Ω) = 1, and (3) µ0(∪Aj) =

∑

µ0(Aj) if
Aj ∈ A, Ai ∩ Aj = ∅, and ∪Aj ∈ A, has a unique extension to a probability measure µ on σ(A).

In particular this lets us construct Lebesgue measure m(dx) on the unit cube in R
n, so we

can explore some of its properties.
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