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Random Variables

Let Ω be any set, F any Sigma Field on Ω, and P any probability measure defined for each
element of F ; such a triple (Ω,F,P) is called a probability space. Let R denote the real numbers
(−∞,∞) and B the Borel sets on R generated by (for example) the half-open sets (a, b].

Definition. A real-valued Random Variable is a function X : Ω → R that is “F\B-measurable,”
i.e., that satisfies X−1(B) = {ω : X(ω) ∈ B} ∈ F for each Borel set B ∈ B (or, equivalently,
simply for each set B of the form (−∞, b] for some rational −∞ < b <∞).

This is sometimes denoted simply “X−1(B) ⊂ F .” Since the probability measure P is only
defined on sets F ∈ F , a random variable must satisfy this condition if we are to be able to find
the probability Pr[X ∈ B] for each Borel set B, or even if we want to find the distribution func-
tion (DF) FX(b) ≡ Pr[X ≤ b] for each rational number b. Note that set-inverses are rather well-
behaved functions from one class of sets to another; specifically, for any collection {Aα} ⊂ B,

[X−1(Aα)]c = X−1
(

(Aα)c
)

⋂

α

X−1(Aα) = X−1
(

⋂

α

Aα

)

⋃

α

X−1(Aα) = X−1
(

⋃

α

Aα

)

and thus, measurable or not, X−1(B) is a Sigma Field if B is; it is denoted FX (or σ(X)), called
the “sigma field generated by X,” and is the smallest sigma field G such that X is (G\B)- mea-
surable. In particular, X is (F\B)- measurable if and only if σ(X) ⊂ F .

In probability and statistics, sigma field’s represent information: a random variable Y is
measurable over FX if and only if the value of Y can be found from that of X, i.e., if there ex-
ists some function ϕ such that Y = ϕ(X). Note the difference in perspective between real analy-
sis, on the one hand, and probability/statistics, on the other; in analysis it is only Lebesgue mea-
surability that mathematicians worry about, and only to avoid paradoxes and pathologies. In
probability and statistics we study measurability for a variety of sigma field’s, and the (technical)
concept of measurability corresponds to the (empirical) notion of observability.

DISTRIBUTIONS.

A random variable X on a probability space (Ω,F,P) induces a measure µX on (R,B), called the
distribution measure (or simply the distribution), via the relation

µ(B) = P[X ∈ B],

sometimes written more succinctly as µX = P ◦X−1 or even PX−1.

Functions of Random Variables

Let (Ω,F,P) be a probability space, X a (real-valued) random variable, and f : R → R a (real-
valued B\B) measurable function. Then Y = f(X) is a random variable, i.e.,

Y −1(B) = X−1(f−1(B)) ∈ F

for any B ∈ B. Also every continuous or piecewise-continuous real-valued function on R is B\B-
measurable.
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Random Vectors

Denote by R
2 the set of points (x, y) in the plane, and by B2 the sigma field generated by rect-

angles of the form {(x, y) : a < x ≤ b, c < y ≤ d} = (a, b] × (c, d]. Note that finite unions of
those rectangles form a field F 2

0 , so the minimal sigma field and minimal λ system containing F 2
0

coincide, and the assignment λ2
0

(

(a, b] × (c, d]
)

= (b − a) × (d − c) has a unique extension to a
measure on all of B2, called two-dimensional Lebesgue measure (and denoted λ2). Of course, it’s
just the area of sets in the plane.

A F\R2-measurable mapping X : Ω → R
2 is called a (two-dimensional) random vector, or

simply an R
2-valued random variable, or (a bit ambiguously) an R

2-RV. It’s easy to show that
the components X1, X2 of a R

2-RV X are each RV’s, and conversely that for any two random
variables X1 and X2 the two-dimensional RV (X,Y ) : Ω → R

2 is F\R2-measurable, i.e., is a
R

2-RV.
Also, any measurable (and in particular, any piecewise-continuous) function f : R

2 → R

induces a random variable f(X,Y ): this shows that such combinations as X + Y , X/Y , X ∧ Y ,
X ∨ Y , etc. are all random variables if X and Y are.

The same ideas work in any finite number of dimensions, so without any special notice we
will regard n-tuples (X1, ..., Xn) as R

n-valued RV’s, or F\Bn-measurable functions, and will use
Lebesgue n-dimensional measure λn on Bn. Again

∑

i Xi,
∏

i Xi, mini Xi, and maxi Xi are all
random variables.

Even if we have infinitely many random variables we can verify the measurability of
∑

i Xi,
infi Xi, and supi Xi, and of lim inf i Xi, and lim supi Xi as well: for example,

[ω : sup
i

Xi(ω) ≤ r] =

∞
⋂

i=1

[ω : Xi(ω) ≤ r]

[ω : lim sup
i

Xi(ω) ≤ r] =
∞
⋃

i=1

∞
⋂

j=i

[ω : Xi(ω) ≤ r].

The event “Xi converges” is the same as

[ω : lim sup
i

Xi(ω)− lim inf
i

Xi(ω) = 0],

and so is F - measurable and has a well defined probability P[lim supi Xi = lim infi Xi]. This is
one point where countible additivity (and not just finite additivity) of P is crucial, and where F
needs to be a sigma field (and not just a field).

Example: Discrete RV’s

If an RV X can take on only a finite or countable set of values, say bi, then each set Λi = [ω :
X(ω) = bi] must be in F , the Λi are disjoint, and X can be represented in the form

X(ω) =
∑

i

bi1Λi
(ω), where (∗)

1Λ(ω) =
{

1 if ω ∈ Λ
0 if ω /∈ Λ

is the so-called indicator function of Λ. By including a term with bi = 0, if necessary, we can as-
sume that Ω = ∪Λi so the {Λi} form a “countable partition” of Ω. Any RV can be approximated
as well as we like by a simple RV of the form (∗).
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EXPLICIT CONSTRUCTION OF SIGMA FIELDS (OMIT ON FIRST READING)
Ordinals and Transfinite Induction

Every finite set S (say, with n < ∞ elements) can be totally ordered a1 ≺ a2 ≺ a3 ≺ . . . in n!
ways, but in some sense every one of these is the same— if ≺1 and ≺2 are two orderings, there
exists a 1–1 order-preserving isomorphism ϕ : (S,≺1)←→ (S,≺2). Thus up to isomorphism there
is only one ordering for any finite set.

For countably infinite sets there are many different orderings. The obvious one is a1 ≺ a2 ≺
a3 ≺ . . ., ordered just like the positive integers N; this ordering is called ω, the first limit ordinal.
But we could pick any element (say, b1 ∈ S) and order the remainder of S in the usual way, but
declare an ≺ b1 for every n ∈ N; one element is “bigger” (in the ordering) than all the others.
This is not isomorphic to ω, and it is called ω+1, the successor to ω. If we set aside two elements
(say, b1 ≺ b2) to follow all the others we have ω + 2, and similarly we have ω + n for each n ∈ N.
The limit of all these is ω + ω, or 2ω... it is the ordering we would get if we lexicographically
ordered the set {(i, j) : i = 1, 2 j ∈ N} of the first two rows of integers in the first quadrant,
declaring (1, i) ≺ (2, j) for every i, j and otherwise (i, j) ≺ (i, k) if j < k.

We would get the successor to this, 2ω + 1, by extending the lexicographical ordering as we
add (3, 1) to S; in an obvious way we get 2ω + n and eventually the limit ordinals 3ω, 4ω, etc.,
and the successor ordinals mω+n. The limit of all these is ωω or ω2, the lexicographical ordering
of the entire first quadrant of integers (i, j). It too has successors ω2 + n (graphically you can
think about integer triplets (i, j, k)), and limits like ω2 + ω and ω3 and ωω (which turns out to be
the same as 2ω).

In general an ordinal is a successor ordinal if it has a maximal element, and otherwise is a
limit ordinal. Every ordinal α has a successor α + 1, and every set of ordinals {αn} has a limit
(least upper bound) λ. Let Ω be the first uncountable ordinal.

Proofs and constructions by transfinite induction usually have one step at each successor
ordinal, and another at each limit ordinal. The Borel sets can be defined by transfinite construc-
tion as follows. Let F1 be any class of subsets of some probability space X (perhaps F1 is the
open sets in X = R, for example).

Succ: For any ordinal α, let Fα+1 be the class of countable unions of sets En ∈ Fα and their com-
plements Em : Ec

m ∈ Fα.
Lim: For any limit ordinal λ, let Fλ = ∪α≺λFα.
Together these define Fα for all ordinals, limit and successor; the sigma field generated by F1 is
just FΩ. It remains to prove that:

1. F1 ⊂ FΩ, i.e., FΩ contains the open sets;
2. E ∈ FΩ =⇒ Ec ∈ FΩ, i.e., FΩ is closed under complements;
3. En ∈ FΩ =⇒ ∪∞n=1En ∈ FΩ, i.e., FΩ is closed under countable unions;
4. FΩ ⊂ G for any sigma field G containing F1.

Item 1. is trivial since FΩ = ∪α≺ΩFα, and in particular contains F1. Item 2. follows by
transfinite induction upon noting that E ∈ Fα =⇒ Ec ∈ Fα+1. Item 3 follows by noting that
En ∈ FΩ =⇒ En ∈ Fαn

for some αn ≺ Ω, and β = supn<∞ αn is an ordinal satisfying αn � β ≺
Ω and hence En ∈ Fβ for all n and ∪∞n=1En ∈ Fβ+1. Verifying the minimality condition Item 4 is
left as an exercise.

It isn’t immediately obvious from the construction that we couldn’t have stopped earlier—
for example, that F2 or Fω isn’t already the Borel sets, unchanging as we allow successively more
intersections and unions. In fact that happens if the original space X is countable or finite; in
the case of R, however, one can show that Fα 6= Fα+1 for every α ≺ Ω.

Do you think this explicit construction is clearer or more complicated than the completion
argument used in Billingsly’s book?
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INFINITE COIN TOSS

For each ω ∈ Ω = (0, 1] and integer n ∈ N let δn(ω) be the nth bit in the nonterminating
binary expansion of ω. There’s some ambiguity in the dyadic expansion of rationals... for exam-
ple, one-half can be written either as 0.10b or as the infinitely repeating 0.01111111...b. If we had
used the convention that the dyadic rationals have only finitely many 1’s in their expansion (so
1/2 = 0.10b) then δn(ω) = b2nωc (mod 2); with our convention that all expansions must have
infinitely many ones, we have

δn(ω) = (d2nωe+ 1) (mod 2).

We can think of {δn} as an infinite sequence of random variables, all defined on the same
measurable space (Ω,B1), with the random variable δ1 equal to zero on (0, 1/2] and one on (1/2, 1];
δ2 equal to zero on (0, 1/4]∪ (1/2, 3/4] and one on (1/4, 1/2]∪ (3/4, 1]; and, in general, δn equal to one
on a union of 2n−1 intervals, each of length 2−n (for a total length of 1/2), and equal to zero on
the complementary set, also of length 1/2. For the Lebesgue probability measure P on Ω that just
assigns to each event E ∈ B1 its length P(E), we have P[Xn = 0] = P[Xn = 1] = 1/2.

Question 1: If we had used the other convention that every binary expansion must have
infinitely many zero’s (instead of one’s), so e.g. 1/2 = 0.10b, then what would
the event E1 ≡ {ω : δ1(ω) = 1} have been?

The sigma field “generated by” any family of random variables {Xα} (whether countable or not)
is defined to be the smallest sigma field for which each Xα is measurable, i.e., the smallest one
containing each Xα

−1(B) for every Borel set B ⊂ R. For each fixed n the σ−algebra Fn gener-
ated by δ1, ..., δn is just the field Fn = {∪i(ai/2

n, bi/2
n]} consisting of all (finite) unions of left-

open intervals with both endpoints an integer over 2n. Each set in Fn can be specified by listing
which of the 2n intervals ( i

2n , i+1
2n ] (0 ≤ i < 2n) it contains, so there are 22n

sets in Fn altogether.
The union ∪Fn consists of all finite unions of left-open intervals with dyadic rational endpoints.
It is closed under taking complements but it still isn’t a sigma field, since it isn’t closed under
taking countable unions and intersections; for example, it contains the set En = {ω : δn=1} for
each n ∈ N and finite intersections like E1 ∩ ... ∩ En = (1 − 2−n, 1], but not their countable in-
tersection ∩∞n=1En = {1}. By definition the “join” F =

∨

nFn ≡ σ(∪nFn) is just the smallest
sigma field that contains each Fn (and so contains their union); this is just the familiar Borel sets
in (0, 1].

Lebesgue measure P, which assigns to any interval (a, b] its length, is determined on each Fn

by the rule P
[

∪i (ai/2
n, bi/2

n]
]

=
∑

(bi − ai)2
−n or, equivalently, by the joint distribution of the

random variables δ1, ..., δn: independent Bernoulli’s, each with P[δi = 1] = 1/2. For any number
0 < p < 1 we can make a similar measure Pp on (Ω,Fn) by requiring Pp[δn = 1] = p and, more
generally,

P[δi = di, 1 ≤ i ≤ n] = pΣdi(1−p)n−Σdi ;

the four intervals in F2 would have probabilities [(1−p)2, p(1−p), p(1−p), and p2], for example,
instead of [1/4, 1/4, 1/4, 1/4]. This determines a measure on each Fn, which extends uniquely to a
measure Pp on F =

∨

n Fn. For p = 1/2 this is Lebesgue Measure, characterized by the property
that P

[

(a, b]
]

= b − a for each 0 ≤ a ≤ b ≤ 1, but the other Pp’s are new. This example (the
family δn of random variables on the spaces (Ω,F ,Pp)) is an important one, and lets us build
other important examples.

Under each of these probability distributions all the δn are both identically distributed and
independent, i.e.,

P[δ1 ∈ A1, . . . , δn ∈ An] =

n
∏

i=1

P[δ1 ∈ Ai].
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Any probability assignment to intervals (a, b] ⊂ Ω determines some joint probability distribution
for all the {δn}, but typically the δn will be neither independent nor identically distributed. For
any DF (i.e., non-decreasing right-continuous function F (x) satisfying F (0) = 0 and F (1) = 1),
the prescription PF

(

(a, b]
)

≡ F (b) − F (a) determines a probability distribution on every Fn that
extends uniquely to F , determining the joint distribution of all the {δn}.

Question 2: For F (x) = x2, are δ1 and δ2 identically distributed? Independent? Find the
marginal probability distribution for each δn under PF .

MEASURABILITY AND OBSERVABILITY

Fix any measure Pp on (Ω,F) (say, Lebesgue measure P = P.5), and define a new sequence
of random variables Yn on (Ω,F,P) by

Yn(ω) =

n
∑

i=1

(−1)δn(ω) =

n
∑

i=1

(

2δn(ω)− 1
)

,

the sum of n independent terms, each ±1 with probability 1/2 each. This is the “symmetric ran-
dom walk” (it would be assymetric with Pp for p 6= .5), starting at the origin and moving left or
right with equal probability at each step; each Yn is 2Sn − n for the binomial Bi(n, .5) random
variable Sn =

∑n
i=1 δi, the partial sums of the δn’s.

The sigma field generated by the first n Yi’s, that generated by the first n Si’s, and that
generated by the first n δi’s are all the same, the finite field Fn of all unions of half-open inter-
vals with endpoints of the form j2−n, and a random variable Z on (Ω,F,P) is Fn-measurable if
and only if Z can be written as a function Z = ϕn(δ1, . . . , δn) of the first n δ’s. Thus “measura-
bility” means something for us— Z is measureable over Fn if and only if you can tell its value
by observing the first n values of δi (or, equivalently, of Yi or Si). We’ll see that a function Z
on Ω is F -measurable (i.e., is a random variable) if and only if you can approximate it arbitrarily
well by a function of the first n δi’s, as n→∞.

UNIFORMS, NORMALS, AND MORE

From the infinite sequence of independent random bits {δn} we can construct as many ran-
dom variables as we like of any distribution, all on the same space (Ω,F,P), the unit interval
with Lebesgue measure (length). For example, set:

U1(ω) =

∞
∑

i=1

2−iδ2i(ω) U3(ω) =

∞
∑

i=1

2−iδ5i(ω)

U2(ω) =
∞
∑

i=1

2−iδ3i(ω) U4(ω) =
∞
∑

i=1

2−iδ7i(ω),

each the sum of different (and therefore independent) random bits; it is easy to see that {Un}
will be independent, uniformly distributed random variables for n = 1, 2, 3, 4, and that we could
construct as many of them as we like using successive primes {2, 3, 5, 7, 11, 13, ...}.

Question 3: Why did I use δ2i , δ3i , δ5i , δ7i? Give another choice that would have worked.

Let F (x) be any DF (right-continuous, non-decreasing function on R with limits 0 and 1
x→ −∞ and x→ +∞, respectively) and define:

X1(ω) = inf[x ∈ R : F (x) ≥ U1(ω)] X3(ω) = inf[x ∈ R : F (x) ≥ U3(ω)]

X2(ω) = inf[x ∈ R : F (x) ≥ U2(ω)] X4(ω) = inf[x ∈ R : F (x) ≥ U4(ω)];
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it’s not hard to see or show (we’ll do it in a week or so) that the {Xn} are independent, each
with DF F (x) = P [Xn ≤ x]. For example, we could take Xn = Φ−1(Un) to get independent
random variables with the standard normal distribution or Xn = − log(1 − Un) for the exponen-
tial distribution.

Independent normal random variables can be constructed even more efficiently via:

Z1(ω) = cos(2πU1)
√

−2 lnU2 Z3(ω) = cos(2πU3)
√

−2 ln U4

Z2(ω) = sin(2πU1)
√

−2 lnU2 Z4(ω) = sin(2πU3)
√

−2 lnU4;

We’ve seen that from ordinary length measure on the unit interval (or, equivalently, from
a single uniformly-distributed random variable ω) we can construct first an infinite sequence of
independent 0− 1 bits δn; then an infinite sequence of independent uniform random variables Un;
then an infinite sequence of independent normal random variables Zn or, more generally, random
variables Xn with any distribution(s) we choose.

The Cantor Distribution

Set Y ≡ ∑∞

n=1 2δn3−n; then the ternery expansion of y = Y (ω) includes only zero’s (where
δn = 0) and two’s (where δn = 1), and so lies in the Cantor set. Since Y takes on uncountably
many different values, it cannot have a discrete random variable. Its CDF can be given analyti-
cally by the expression

F (y) =
∞
∑

n=1

{2−n : tn > 0, tm 6= 1, 1 ≤ m < n},

in terms of the ternary expansion tn ≡ b3nyc (mod 3) of y =
∑∞

n=1 tn3−n or graphically as

x
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Evidently F (x) has derivative F ′ = 0 wherever it is differentiable; this distribution is an example
of a singular distribution, one that is neither absolutely continuous nor discrete.

Theorem. Let F (x) be any distribution function. Then there exist unique numbers pd ≥ 0,
pc ≥ 0, ps ≥ 0 with pd + pc + ps = 1 and distribution functions Fd(x), Fc(x), Fs(x) with
the properties that Fd is discrete with some probability mass function fd(x), Fc is absolutely
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continuous with some probability density function fc(x), and Fs is singular, satisfying F (x) =
pdFd(x) + pcFc(x) + psFs(x) and

Fd(x) =
∑

t≤x

fd(t), Fc(x) =

∫

t≤x

fc(t) dt, F ′
s(x) = 0.

EXPECTATION AND INTEGRAL INEQUALITIES
Discrete RV’s

If a random variable Y can take on only a finite or countably infinite set of values, say bi, then
each set Λi = [ω : Y (ω) = bi] must be in F ; the Λi are disjoint, and Y can be represented in the
form

Y (ω) =
∑

i

bi1Λi
(ω), where 1Λi

(ω) =

{

1 if ω ∈ Λi

0 if ω /∈ Λi
(?)

is the so-called indicator function of Λi. By adding a term with bi = 0, if necessary, we can as-
sume that Ω = ∪Λi so the {Λi} form a “countable partition” of Ω. Any RV X can be approxi-
mated as well as we like by a simple RV of the form (?) by choosing ε > 0, setting bi ≡ iε, and

Λi ≡ {ω : bi ≤ X(ω) < bi + ε} Xε(ω) ≡
∞
∑

−∞

bi1Λi
(ω) = ε bX(ω)/εc

It is easy to define the expectation of such a simple RV, or (equivalently) the integral of Xε over
(Ω,F,P), if X is bounded below or above (to avoid indeterminate sums):

EXε =

∫

Ω

Xε(ω)P(dω) =

∫

Ω

Xε(ω) dP(ω) =

∫

Ω

Xε dP =
∑

i

biP(Λi)

Since Xε(ω) ≤ X(ω) < Xε(ω) + ε, we have EXε ≤ EX < EXε + ε, i.e.,

∑

i

iεP[iε ≤ X < (i+1)ε] ≤ EX <
∑

i

iεP[iε ≤ X < (i+1)ε] + ε. (??)

This determines the value of EX =
∫

Ω
X dP for each random variable X. If we take ε = 2−n

above, and simplify the notation by writing Xn for X2−n = 2−nb2nXc, the sequence Xn increases
monotonically to X and we can define EX = limn EXn.

Note that even for Ω = (0, 1], P = λ(dx) (Lebesgue measure), and X continuous, the passage
to the limit suggested in (??) is not the same as the limit of Riemann sums that is used to in-
troduce integration in undergraduate calculus courses; for the Riemann sum it is the x-axis that
is broken up into integral multiples of some ε, determining the integral of continuous functions,
while here it is the y axis that is broken up, determining the integral of all measurable functions.
The two definitions of integral agree for continuous functions where they are both defined, of
course, but the present one is much more general.

If X is not bounded below or above, we can set X+ ≡ 0 ∨ X and X− ≡ 0 ∨ −X, so that
X = X+ − X− with both X+ and X− bounded below (by zero), so their expectations are well-
defined; if either EX+ <∞ or EX− <∞, we can unambiguously define EX ≡ EX+−EX−, while
if EX+ = EX− =∞ we regard EX as undefined.

For any measurable set Λ ∈ F we write
∫

Λ
X dP for EX1Λ. For Ω ⊂ R, if P gives positive

probability to either {a} or {b} then the integrals over the sets (a, b), (a, b], [a, b), and [a, b] may

all be different; the notation
∫ b

a
X dP isn’t expressive enough to distinguish them.
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Frequently in Probability and Statistics we need to calculate or estimate integrals and expec-
tations; usually this is done through limiting arguments in which a sequence of integrals is shown
to converge to the one whose value we need. Here are some important properties of integrals for
any measurable set Λ ∈ F and random variables {Xn}, X, Y , useful for bounding or estimat-
ing the integral of a random variable X (they’re only listed here for reference and so we can talk
about them— don’t worry, you won’t have to remember them all or know how to prove them!):

1.
∫

Λ
X dP is well-defined and finite if and only if

∫

Λ
|X| dP < ∞, and

∣

∣

∣

∫

Λ
X dP

∣

∣

∣
≤

∫

Λ
|X| dP.

We can also define
∫

Λ
X dP ≤ ∞ for any X bounded below by some b > −∞.

2. Lebesgue’s Monotone Convergence Thm: If 0 ≤ Xn ↗ X, then
∫

Λ
Xn dP↗

∫

Λ
X dP ≤

∞. In particular, the sequence of integrals converges (possibly to +∞).

3. Lebesgue’s Dominated Convergence Thm: If Xn → X, and if |Xn| ≤ Y for some RV
Y ≥ 0 with EY <∞, then

∫

Λ
Xn dP→

∫

Λ
X dP and

∫

Λ
|X| dP ≤

∫

Λ
Y dP <∞. In particular,

the sequence of integrals converges to a finite limit.

4. Fatou’s Lemma: If Xn ≥ 0 on Λ, then
∫

Λ
(lim inf Xn) dP ≤ lim inf

( ∫

Λ
Xn dP

)

. The two
sides may be unequal (example?), and the result is false for lim sup.

5. Fubini’s Thm: If either each Xn ≥ 0, or
∑

n

∫

Λ
|Xn| dP < ∞, then the order of integration

and summation can be exchanged:
∑

n

∫

Λ
Xn dP =

∫

Λ

∑

n Xn dP. If both these conditions
fail, the orders may not be exchangeable (example?)

6. For any p > 0, E|X|p =
∫ ∞

0
p xp−1

P[|X| > x] dx and E|X|p < ∞ ⇔ ∑∞

n=1 np−1
P[|X| ≥

n] < ∞. The case p = 1 is easiest and most important: if S ≡ ∑∞

n=1 P[|X| ≥ n] < ∞, then
S ≤ E|X| < S+1. If X takes on only nonnegative integer values, EX = S.

7. If µX is the distribution of X, and if f is a measurable real-valued function on R, then
Ef(X) =

∫

Ω
f(X(ω)) dP =

∫

R
f(x)µX(dx) if either side exists. In particular, µ = EX =

∫

xµX(dx) and σ2 = E(X − µ)2 =
∫

(x− µ)2 µX(dx).

8. Hölder’s Inequality: Let p > 1 and q = p
p−1 (e.g., p = q = 2 or p = 1.01, q = 101). Then

EXY ≤ E |XY | ≤
[

E|X|p
]

1

p
[

E|Y |q
]

1

q . In particular, for p = q = 2,

Cauchy-Schwartz Inequality: EXY ≤ E |XY | ≤
√

EX2 EY 2.

9. Minkowski’s Inequality: Let 1 ≤ p ≤ ∞ and let X,Y ∈ Lp(Ω,F,P). Then

(E|X + Y |p)
1

p ≤ (E|X|p)
1

p + (E|Y |p)
1

p

Thus the norm ‖X‖p ≡ (E|X|p) 1

p obeys the triangle inequality on Lp(Ω,F,P).

10. Jensen’s Inequality: Let ϕ(x) be a convex function on R, X an integrable RV. Then
ϕ(E[X]) ≤ E[ϕ(X)]. Examples: ϕ(x) = |x|p, p ≥ 1; ϕ(x) = ex; ϕ(x) = [0 ∨ x].

11. Markov’s & Chebychev’s Inequalities: If ϕ is positive and increasing, then P[|X| ≥ u] ≤
E[ϕ(|X|)]/ϕ(u). In particular P[|X − µ| > u] ≤ σ2

u2 and P[|X| > u] ≤ σ2+µ2

u2 .

One-Sided Version: P[X > u] ≤ σ2

σ2+(u−µ)2
.

12. Hoeffding’s Inequality: If {Xj} are independent and (∃ {aj , bj}) s.t. P[aj ≤ Xj ≤ bj ] = 1,
then (∀c > 0), Sn :=

∑n
j=1 Xj satisfies P[Sn − ESn ≥ c] ≤ exp

(

− 2c2/
∑n

1 |bj − aj |2
)

.
Hoeffding proved this improvement on Chebychev’s inequality (at UNC) in 1963. See also
related Azuma’s inequality (1967), Bernstein’s inequality (1937), and Chernoff bounds
(1952).
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