Probability Theory

Robert L. Wolpert
Institute of Statistics and Decision Sciences
Duke University, Durham, NC, USA

1. Lebesgue Theorems

Let X_{n} be a sequence of random variables on a probability space ($\Omega, \mathcal{F}, \mathrm{P}$). If $X_{n}(\omega) \rightarrow X(\omega)$ for some random variable X, does it follow that $\mathrm{E}\left[X_{n}\right] \rightarrow$ $\mathrm{E}[X]$? That is, may we exchange expectation and limits in the equation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right] \stackrel{?}{=} \mathrm{E}\left[\lim _{n \rightarrow \infty} X_{n}\right] ? \tag{1}
\end{equation*}
$$

In general the answer is no; for a simple example take $\Omega=(0,1]$, the unit interval, with Borel sets $\mathcal{F}=\mathcal{B}$ and Lebesgue measure $\mathrm{P}=\lambda$, and for $n \in \mathbb{N}$ set

$$
\begin{equation*}
X_{n}(\omega)=2^{n} 1_{\left(0,2^{-n}\right]}(\omega) . \tag{2}
\end{equation*}
$$

For each $\omega \in \Omega, X_{n}(\omega)=0$ for all $n>\log _{2}(1 / \omega)$, so $X_{n}(\omega) \rightarrow 0$ as $n \rightarrow \infty$ for every ω, but $\mathrm{E}\left[X_{n}\right]=1$ for all n.
We will want to find conditions that allow us to compute expectations by taking limits, i.e., to force an equality in Equation (1). The two most famous of these conditions are both attributed to Lebesgue: the Monotone Convergence Theorem (MCT) and the Dominated Convergence Theorem (DCT). We will see stronger results later in the course - but let's look at these now.

1.1. Expectation

Let \mathcal{E} be the linear space of finite-valued \mathcal{F}-measureable random variables, and let \mathcal{E}_{+}be the positive members of \mathcal{E} - each $X \in \mathcal{E}$ may be represented in the form

$$
X(\omega)=\sum_{j=1}^{k} a_{j} 1_{A_{j}}(\omega)
$$

for some $k \in \mathbb{N},\left\{a_{j}\right\} \subset \mathbb{R}$ and $\left\{A_{j}\right\} \subset \mathcal{F}$. The representation is only unique if we insist that the $\left\{a_{j}\right\}$ be distinct and that the $\left\{A_{j}\right\}$ be disjoint, in which case $X \in \mathcal{E}_{+}$if and only if each $a_{j} \geq 0$. In general we will not need uniqueness of the representation, so don't demand that the $\left\{a_{j}\right\}$ be distinct nor that the $\left\{A_{j}\right\}$ be disjoint.
We define the expectation for simple functions in the obvious way:

$$
\mathrm{E} X=\sum_{j=1}^{k} a_{j} \mathrm{P}\left(A_{j}\right)
$$

For this to be a "definition" we must verify that it is well-defined in the sense that it doesn't depend on the (non-unique) representation; that's easy.
Now we extend the definition of expectation to all non-negative \mathcal{F}-measurable random variables as follows:

Definition 1 The expectation of any nonnegative random variable $X \geq 0$ on ($\Omega, \mathcal{F}, \mathrm{P}$) is

$$
\mathrm{E} X=\lim \mathrm{E} X_{n}
$$

for any simple sequence $X_{n} \in \mathcal{E}_{+}$such that $X_{n}(\omega) \nearrow X(\omega)$ for each $\omega \in \Omega$.
For this definition to make sense we have three things to check:

1. For any $X \geq 0$ there exists at least one sequence $\left\{X_{n}\right\} \subset \mathcal{E}_{+}$for which $X_{n}(\omega) \nearrow X(\omega)$ for all $\omega \in \Omega$;
2. For any sequence $\left\{X_{n}\right\} \subset \mathcal{E}_{+}$for which $m<n \Rightarrow X_{m}(\omega) \leq X_{n}(\omega)$ for all $\omega \in \Omega$, the $\operatorname{limit} \lim \mathrm{E}\left[X_{n}\right]$ exists as an extended-real-valued number (i.e., the limit takes values in $\overline{\mathbb{R}}_{+}=[0, \infty]$ and in particular might be ∞);
3. If $\left\{X_{n}\right\} \subset \mathcal{E}_{+}$and $\left\{Y_{m}\right\} \subset \mathcal{E}_{+}$are two sequences that both satisfy $X_{n} \nearrow X$ and $Y_{m} \nearrow X$, then the limits

$$
\lim _{n \rightarrow \infty} \mathrm{E} X_{n}=\lim _{m \rightarrow \infty} \mathrm{E} Y_{m}
$$

coincide.
For the third of these it's useful to first prove
Lemma 1 Let $Z_{n} \in \mathcal{E}_{+}$for $n \in \mathbb{N}$ and suppose $Z_{n} \searrow 0$. Then $\mathrm{E} Z_{n} \rightarrow 0$.

Proof. Since each element in \mathcal{E} is bounded, find K with $Z_{1} \leq K<\infty$; then for any $\epsilon>0,0 \leq \mathrm{E}\left[Z_{n}\right] \leq \epsilon \mathrm{P}\left[Z_{n} \leq \epsilon\right]+K \mathrm{P}\left[Z_{n}>\epsilon\right] \rightarrow 0$.

Item (3) above now follows by symmetry from:
Lemma 2 If $X_{n}, Y_{m} \in \mathcal{E}_{+}$are two increasing sequences and if $\lim _{n \rightarrow \infty} X_{n}(\omega) \leq$ $\lim _{m \rightarrow \infty} Y_{m}(\omega)$ for each $\omega \in \Omega$, then $\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right] \leq \lim _{m \rightarrow \infty} \mathrm{E}\left[Y_{m}\right]$.

Proof. Fix any $n \in \mathbb{N}$; then $\left(X_{n} \wedge Y_{m}\right) \nearrow X_{n}$ as $m \rightarrow \infty$, since (by hypothesis) $\lim Y_{m} \geq \lim X_{m} \geq X_{n}$. By monotonicity on \mathcal{E}_{+}, using Lemma(1),

$$
\mathrm{E}\left(X_{n}\right)=\lim _{m \rightarrow \infty} \mathrm{E}\left(X_{n} \wedge Y_{m}\right) \leq \lim _{m \rightarrow \infty} \mathrm{E}\left(Y_{m}\right)
$$

Now take $n \rightarrow \infty$ to find

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right) \leq \lim _{m \rightarrow \infty} \mathrm{E}\left(Y_{m}\right)
$$

as required.
Now that we have $\mathrm{E} X$ well-defined for random variabls $X \geq 0$ we may extend the definition by

$$
\mathrm{E} X=\mathrm{E} X_{+}-\mathrm{E} X_{-}
$$

to all random variables for which either of the nonnegative random variables $X_{+}=(X \vee 0), X_{-}=(-X \vee 0)$ has finite expectation. If both $\mathrm{E} X_{+}$and $\mathrm{E} X_{-}$are infinite, we must leave $\mathrm{E} X$ undefined.

1.1.1. Example

Does the alternating sum

$$
\begin{equation*}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{k \in \mathbb{N}} \frac{(-1)^{k+1}}{k} \tag{3}
\end{equation*}
$$

converge? Let's look closely. First, for any $p \in \mathbb{R}$ define

$$
S(n)=\sum_{k=1}^{n} k^{-p} \quad I(n)=\int_{1}^{n} x^{-p} d x=\left\{\begin{array}{ll}
\frac{n^{1-p}-1}{1-p} & p \neq 1 \\
\log n & p=1 .
\end{array} .\right.
$$

For $p<0$ the function x^{-p} is increasing, so $I(n)+1 \leq S(n)<I(n+1)$ and so

$$
p<0 \Rightarrow \frac{n^{1-p}+p}{1-p} \leq \sum_{k=1}^{n} k^{-p}<\frac{(n+1)^{1-p}-1}{1-p}
$$

and $S(n) \propto n^{1-p} \rightarrow \infty$ as $n \rightarrow \infty$.
For $p>0$ the function x^{-p} is decreasing, so $I(n+1)<S(n) \leq I(n)+1$ and so

$$
p>0 \Rightarrow \frac{(n+1)^{1-p}-1}{1-p}<\sum_{k=1}^{n} k^{-p} \leq \frac{n^{1-p}+p}{1-p}
$$

for $p \neq 1$. For $0<p<1$ we again have $S(n) \propto n^{1-p} \rightarrow \infty$ as $n \rightarrow \infty$, but for $p>1$ the series converges to some limit $S(\infty) \in(1, p) /(p-1)$. For example, with $p=2$ we have $S(\infty)=\pi^{2} / 6 \approx 1.644934 \in(1,2)$. For any $p>1$ the limit is called the Riemann-zeta function $S(\infty)=\zeta(p)$.
For $p=1$ we again have divergence, with bounds

$$
\log (n+1)<S(n) \leq \log (n)+1
$$

so the harmonic series $S(n)=\sum_{k=1}^{n} \approx \log n$. In fact $[S(n)-\log n] \rightarrow \gamma$ converges as $n \rightarrow \infty$, to Euler's constant $\gamma=0.577215665$.
Thus in the Lebesgue sense, the alternating series of Equation (3) does not converge, since its positive and negative parts

$$
\begin{aligned}
S_{-}(n) & =\sum_{j=1}^{n / 2} \frac{1}{2 j} \\
& =\frac{1}{2} S(n / 2) \\
& =\frac{1}{2}[\log (n / 2)+\gamma]+o(1) \\
S_{+}(n) & =\sum_{j=1}^{n / 2} \frac{1}{2 j-1} \\
& =S(n)-\frac{1}{2} S(n / 2) \\
& =[\log n+\gamma]-\frac{1}{2}[\log (n / 2)+\gamma]+o(1) \\
& =\frac{1}{2}[\log (2 n)+\gamma]+o(1)
\end{aligned}
$$

each approach ∞ as $n \rightarrow \infty$. Notice that the partial sum, the difference

$$
\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}=S_{+}(n)-S_{-}(n)=\frac{1}{2}[\log (2 n)-\log (n / 2)]+o(1)
$$

does converge (to $\log 2$) as $n \rightarrow \infty$... making the example interesting.
What do you think happens with $\sum_{k=1}^{n} \xi_{k} / n$, for independent random variables $\xi_{k}= \pm 1$ with probability $1 / 2$ each?

Theorem 1 (MCT) Let X and $X_{n} \geq 0$ be random variables (not necessarily simple) for which $X_{n} \nearrow X$. Then

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]=\mathrm{E} X=\mathrm{E}\left[\lim _{n \rightarrow \infty} X_{n}\right],
$$

i.e., Equation (1) is satisfied.

For the proof we must find an approximating sequence $Y_{m}^{(n)} \subset \varepsilon_{+}$such that $Y_{m}^{(n)} \nearrow X_{n}$ as $m \rightarrow \infty$ and, from it, construct a single sequence

$$
Z_{m}=\max _{1 \leq n \leq m} Y_{m}^{(n)} \in \mathcal{E}_{+}
$$

that satisfies $Z_{m} \leq X_{m}$ for each m (this is true because, for each $n \leq m$, $Y_{m}^{(n)} \leq X_{n} \leq X_{m}$) and $Z_{m} \nearrow X$ as $m \rightarrow \infty$ (to see this, take $\omega \in \Omega$ and $\epsilon>0$; first find n such that $X_{n}(\omega) \geq X(\omega)-\epsilon$, then find $m \geq n$ such that $Y_{m}^{(n)}(\omega) \geq X_{n}(\omega)-\epsilon$, and verify that $\left.Z_{m}(\omega) \geq X(\omega)-2 \epsilon\right)$, and verify that

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right] \geq \lim _{m \rightarrow \infty} \mathrm{E}\left[Z_{m}\right]=\mathrm{E} X \geq \lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right] .
$$

Theorem 2 (Fatou) Let $X_{n} \geq 0$ be random variables. Then

$$
\mathrm{E}\left[\liminf _{n \rightarrow \infty} X_{n}\right] \leq \liminf _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right] .
$$

Notice that equality may fail, as in the example of Equation (2). To prove this, just set $Y_{n}=\inf _{m \geq n} X_{n}$ and apply MCT to Y_{n}. The condition $X_{n} \geq$ 0 isn't entirely superfluous, but it can be weakened to $X_{n} \geq Z$ for any integrable random variable Z. Finally we have

Theorem 3 (DCT) Let X and X_{n} be random variables (not necessarily simple or positive) for which $X_{n} \rightarrow X$, and suppose that $\left|X_{n}\right| \leq Y$ for some integrable random variable Y with $\mathrm{E} Y<\infty$. Then

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]=\mathrm{E} X=\mathrm{E}\left[\lim _{n \rightarrow \infty} X_{n}\right],
$$

i.e., Equation (1) is satisfied; moreover, we have $\mathrm{E}\left|X_{n}-X\right| \rightarrow 0$.

To show this we just apply Fatou's lemma to both ($X_{n}-X$) and to ($X-$ X_{n}); each is bounded below by $-2 Y$. For the "moreover" part, apply DCT separately to the positive and negative parts $\left(X_{n}-X\right)_{+}=0 \vee\left(X_{n}-X\right)$ and $\left(X_{n}-X\right)_{-}=0 \vee\left(X-X_{n}\right)$; each is dominated by $2 Y$ and converges to zero. Then use

$$
\mathrm{E}\left|X_{n}-X\right| \leq \mathrm{E}\left(X_{n}-X\right)_{+}+\mathrm{E}\left(X_{n}-X\right)_{-} \rightarrow 0 .
$$

2. Product Spaces

Let $\left(\Omega_{j}, \mathcal{F}_{j}, \mathrm{P}_{j}\right)$ be a probability space for $j=1,2$ and set

$$
\begin{aligned}
\Omega & =\Omega_{1} \times \Omega_{2} \\
& \equiv\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{j} \in \Omega_{j}\right\} \\
\mathcal{F} & =\mathcal{F}_{1} \times \mathcal{F}_{2} \\
& \equiv \sigma\left\{A_{1} \times A_{2}: A_{j} \in \mathcal{F}_{j}\right\} \\
\mathrm{P} & =\mathrm{P}_{1} \times \mathrm{P}_{2}, \text { the unique extension satisfying } \\
\mathrm{P}\left(A_{1} \times A_{2}\right) & =P_{1}\left(A_{1}\right) \cdot P_{2}\left(A_{2}\right) .
\end{aligned}
$$

For any $A \in \mathcal{F}$ and $\omega_{2} \in \Omega_{2}$ the (second) section of A is

$$
A_{\omega_{2}}=\left\{\omega_{1}:\left(\omega_{1}, \omega_{2}\right) \in A\right\} \subset \Omega_{1} .
$$

It's not completely obvious, but one can verify that $A_{\omega_{2}} \in \mathcal{F}_{1}$ - it's trivial for product sets $A=A_{1} \times A_{2}$, but we need a $\pi-\lambda$ argument to conclude it for all of \mathcal{F}. What happens for sets $A \subset \mathcal{F}^{\mathrm{P}}$ in the P -completion of $\mathcal{F}_{1} \times \mathcal{F}_{2}$? Similarly, for any \mathcal{F}-measurable random variable $X: \Omega_{1} \times \Omega_{2} \rightarrow \mathcal{S}$ (\mathcal{S} would be \mathbb{R}, for real-valued RV's, but could also be \mathbb{R}^{n} or any metric space), and for any $\omega_{2} \in \Omega_{2}$, the section of X is $X_{\omega_{2}}: \Omega_{1} \rightarrow \mathcal{S}$ defined by

$$
X_{\omega_{2}}\left(\omega_{1}\right)=X\left(\omega_{1}, \omega_{2}\right) .
$$

If $X=1_{A}$ is the indicator function of some set $A \in \mathcal{F}$, then the section $X_{\omega_{2}}$ is the indicator function $X_{\omega_{2}}=1_{A_{\omega_{2}}}$ of the section $A_{\omega_{2}}$. It is (again) perhaps not quite obvious, but true, that $X_{\omega_{2}}$ is \mathcal{F}_{1}-measurable. It follows most
easily from the same result for sets, upon looking at the set $A=X^{-1}(B)=$ $\{\omega: X(\omega) \in B\}$ for arbitrary $B \in \sigma(\mathcal{S})$ and checking that $A_{\omega_{2}}=X_{\omega_{2}}^{-1}(B)=$ $\{\omega: X(\omega) \in B\}$. Is it still true if X is only \mathcal{F}^{P}-measurable?
Finally,

2.1. Fubini

Fubini's theorem gives conditions (namely, that either $X \geq 0$ or $\mathrm{E}|X|<\infty$) to guarantee that these three integrals are meaningful and equal:

$$
\int_{\Omega_{2}}\left\{\int_{\Omega_{1}} X_{\omega_{2}} d \mathrm{P}_{1}\right\} d \mathrm{P}_{2} \stackrel{?}{=} \iint_{\Omega} X d \mathrm{P} \stackrel{?}{=} \int_{\Omega_{1}}\left\{\int_{\Omega_{2}} X_{\omega_{1}} d \mathrm{P}_{2}\right\} d \mathrm{P}_{1}
$$

