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1. Lebesgue Theorems

Let Xn be a sequence of random variables on a probability space (Ω,F,P).
If Xn(ω) → X(ω) for some random variable X, does it follow that E[Xn] →
E[X]? That is, may we exchange expectation and limits in the equation

lim
n→∞

E[Xn]
?
= E[ lim

n→∞
Xn]? (1)

In general the answer is no; for a simple example take Ω = (0, 1], the unit
interval, with Borel sets F = B and Lebesgue measure P = λ, and for n ∈ N

set
Xn(ω) = 2n 1(0,2−n ](ω). (2)

For each ω ∈ Ω, Xn(ω) = 0 for all n > log2(1/ω), so Xn(ω) → 0 as n → ∞
for every ω, but E[Xn] = 1 for all n.

We will want to find conditions that allow us to compute expectations by
taking limits, i.e., to force an equality in Equation (1). The two most famous
of these conditions are both attributed to Lebesgue: the Monotone Conver-
gence Theorem (MCT) and the Dominated Convergence Theorem (DCT).
We will see stronger results later in the course— but let’s look at these now.

1.1. Expectation

Let E be the linear space of finite-valued F-measureable random variables,
and let E+ be the positive members of E— each X ∈ E may be represented
in the form

X(ω) =

k
∑

j=1

aj1Aj
(ω)
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for some k ∈ N, {aj} ⊂ R and {Aj} ⊂ F. The representation is only
unique if we insist that the {aj} be distinct and that the {Aj} be disjoint,
in which case X ∈ E+ if and only if each aj ≥ 0. In general we will not need
uniqueness of the representation, so don’t demand that the {aj} be distinct
nor that the {Aj} be disjoint.

We define the expectation for simple functions in the obvious way:

EX =
k

∑

j=1

ajP(Aj).

For this to be a “definition” we must verify that it is well-defined in the sense
that it doesn’t depend on the (non-unique) representation; that’s easy.

Now we extend the definition of expectation to all non-negative F-measurable
random variables as follows:

Definition 1 The expectation of any nonnegative random variable X ≥ 0
on (Ω,F,P) is

EX = limEXn

for any simple sequence Xn ∈ E+ such that Xn(ω) ↗ X(ω) for each ω ∈ Ω.

For this definition to make sense we have three things to check:

1. For any X ≥ 0 there exists at least one sequence {Xn} ⊂ E+ for which
Xn(ω) ↗ X(ω) for all ω ∈ Ω;

2. For any sequence {Xn} ⊂ E+ for which m < n ⇒ Xm(ω) ≤ Xn(ω)
for all ω ∈ Ω, the limit limE[Xn] exists as an extended-real-valued
number (i.e., the limit takes values in R+ = [0,∞] and in particular
might be ∞);

3. If {Xn} ⊂ E+ and {Ym} ⊂ E+ are two sequences that both satisfy
Xn ↗ X and Ym ↗ X, then the limits

lim
n→∞

EXn = lim
m→∞

EYm

coincide.

For the third of these it’s useful to first prove

Lemma 1 Let Zn ∈ E+ for n ∈ N and suppose Zn ↘ 0. Then EZn → 0.
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Proof. Since each element in E is bounded, find K with Z1 ≤ K < ∞;
then for any ε > 0, 0 ≤ E[Zn] ≤ εP[Zn ≤ ε] + KP[Zn > ε] → 0.

Item (3) above now follows by symmetry from:

Lemma 2 If Xn, Ym ∈ E+ are two increasing sequences and if limn→∞ Xn(ω) ≤
limm→∞ Ym(ω) for each ω ∈ Ω, then limn→∞ E[Xn] ≤ limm→∞ E[Ym].

Proof. Fix any n ∈ N; then (Xn ∧ Ym) ↗ Xn as m → ∞, since (by hy-
pothesis) limYm ≥ limXm ≥ Xn. By monotonicity on E+, using Lemma(1),

E(Xn) = lim
m→∞

E(Xn ∧ Ym) ≤ lim
m→∞

E(Ym).

Now take n → ∞ to find

lim
n→∞

E(Xn) ≤ lim
m→∞

E(Ym)

as required.

Now that we have EX well-defined for random variabls X ≥ 0 we may
extend the definition by

EX = EX+ − EX−

to all random variables for which either of the nonnegative random variables
X+ = (X ∨ 0), X− = (−X ∨ 0) has finite expectation. If both EX+ and
EX− are infinite, we must leave EX undefined.

1.1.1. Example

Does the alternating sum

1 −
1

2
+

1

3
−

1

4
+ · · · =

∑

k∈N

(−1)k+1

k
(3)

converge? Let’s look closely. First, for any p ∈ R define

S(n) =

n
∑

k=1

k−p I(n) =

∫ n

1
x−p dx =

{

n1−p−1
1−p p 6= 1

log n p = 1
.
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For p < 0 the function x−p is increasing, so I(n) + 1 ≤ S(n) < I(n + 1) and
so

p < 0 ⇒
n1−p + p

1 − p
≤

n
∑

k=1

k−p <
(n + 1)1−p − 1

1 − p
,

and S(n) ∝ n1−p → ∞ as n → ∞.

For p > 0 the function x−p is decreasing, so I(n +1) < S(n) ≤ I(n) + 1 and
so

p > 0 ⇒
(n + 1)1−p − 1

1 − p
<

n
∑

k=1

k−p ≤
n1−p + p

1 − p

for p 6= 1. For 0 < p < 1 we again have S(n) ∝ n1−p → ∞ as n → ∞,
but for p > 1 the series converges to some limit S(∞) ∈ (1, p)/(p − 1). For
example, with p = 2 we have S(∞) = π2/6 ≈ 1.644934 ∈ (1, 2). For any
p > 1 the limit is called the Riemann-zeta function S(∞) = ζ(p).

For p = 1 we again have divergence, with bounds

log(n + 1) < S(n) ≤ log(n) + 1,

so the harmonic series S(n) =
∑n

k=1 ≈ log n. In fact [S(n) − log n] → γ
converges as n → ∞, to Euler’s constant γ = 0.577215665.

Thus in the Lebesgue sense, the alternating series of Equation (3) does not
converge, since its positive and negative parts

S−(n) =

n/2
∑

j=1

1

2j

=
1

2
S(n/2)

=
1

2
[log(n/2) + γ] + o(1)

S+(n) =

n/2
∑

j=1

1

2j − 1

= S(n) −
1

2
S(n/2)

= [log n + γ] −
1

2
[log(n/2) + γ] + o(1)

=
1

2
[log(2n) + γ] + o(1)
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each approach ∞ as n → ∞. Notice that the partial sum, the difference

n
∑

k=1

(−1)k+1

k
= S+(n) − S−(n) =

1

2
[log(2n) − log(n/2)] + o(1)

does converge (to log 2) as n → ∞... making the example interesting.

What do you think happens with
∑n

k=1 ξk/n, for independent random vari-
ables ξk = ±1 with probability 1/2 each?

Theorem 1 (MCT) Let X and Xn ≥ 0 be random variables (not neces-
sarily simple) for which Xn ↗ X. Then

lim
n→∞

E[Xn] = EX = E[ lim
n→∞

Xn],

i.e., Equation (1) is satisfied.

For the proof we must find an approximating sequence Y
(n)
m ⊂ E+ such that

Y
(n)
m ↗ Xn as m → ∞ and, from it, construct a single sequence

Zm = max
1≤n≤m

Y (n)
m ∈ E+

that satisfies Zm ≤ Xm for each m (this is true because, for each n ≤ m,

Y
(n)
m ≤ Xn ≤ Xm) and Zm ↗ X as m → ∞ (to see this, take ω ∈ Ω and

ε > 0; first find n such that Xn(ω) ≥ X(ω) − ε, then find m ≥ n such that

Y
(n)
m (ω) ≥ Xn(ω) − ε, and verify that Zm(ω) ≥ X(ω) − 2ε), and verify that

lim
n→∞

E[Xn] ≥ lim
m→∞

E[Zm] = EX ≥ lim
n→∞

E[Xn].

Theorem 2 (Fatou) Let Xn ≥ 0 be random variables. Then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn].

Notice that equality may fail, as in the example of Equation (2). To prove
this, just set Yn = infm≥n Xn and apply MCT to Yn. The condition Xn ≥
0 isn’t entirely superfluous, but it can be weakened to Xn ≥ Z for any
integrable random variable Z. Finally we have

Theorem 3 (DCT) Let X and Xn be random variables (not necessarily
simple or positive) for which Xn → X, and suppose that |Xn| ≤ Y for some
integrable random variable Y with EY < ∞. Then
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lim
n→∞

E[Xn] = EX = E[ lim
n→∞

Xn],

i.e., Equation (1) is satisfied; moreover, we have E|Xn − X| → 0.

To show this we just apply Fatou’s lemma to both (Xn − X) and to (X −
Xn); each is bounded below by −2Y . For the “moreover” part, apply DCT
separately to the positive and negative parts (Xn − X)+ = 0 ∨ (Xn − X)
and (Xn −X)− = 0∨ (X −Xn); each is dominated by 2Y and converges to
zero. Then use

E|Xn − X| ≤ E(Xn − X)+ + E(Xn − X)− → 0.

2. Product Spaces

Let (Ωj ,Fj ,Pj) be a probability space for j = 1, 2 and set

Ω = Ω1 × Ω2

≡ {(ω1, ω2) : ωj ∈ Ωj}

F = F1 × F2

≡ σ{A1 × A2 : Aj ∈ Fj}

P = P1 × P2, the unique extension satisfying

P(A1 × A2) = P1(A1) · P2(A2).

For any A ∈ F and ω2 ∈ Ω2 the (second) section of A is

Aω2
= {ω1 : (ω1, ω2) ∈ A} ⊂ Ω1.

It’s not completely obvious, but one can verify that Aω2
∈ F1— it’s trivial

for product sets A = A1 ×A2, but we need a π − λ argument to conclude it
for all of F. What happens for sets A ⊂ FP in the P-completion of F1 ×F2?

Similarly, for any F-measurable random variable X : Ω1 ×Ω2 → S (S would
be R, for real-valued RV’s, but could also be R

n or any metric space), and
for any ω2 ∈ Ω2, the section of X is Xω2

: Ω1 → S defined by

Xω2
(ω1) = X(ω1, ω2).

If X = 1A is the indicator function of some set A ∈ F, then the section Xω2
is

the indicator function Xω2
= 1Aω2

of the section Aω2
. It is (again) perhaps

not quite obvious, but true, that Xω2
is F1-measurable. It follows most

6



easily from the same result for sets, upon looking at the set A = X−1(B) =
{ω : X(ω) ∈ B} for arbitrary B ∈ σ(S) and checking that Aω2

= X−1
ω2

(B) =
{ω : X(ω) ∈ B}. Is it still true if X is only FP-measurable?

Finally,

2.1. Fubini

Fubini’s theorem gives conditions (namely, that either X ≥ 0 or E|X| < ∞)
to guarantee that these three integrals are meaningful and equal:

∫

Ω2

{
∫

Ω1

Xω2
dP1

}

dP2
?
=

∫∫

Ω
X dP

?
=

∫

Ω1

{
∫

Ω2

Xω1
dP2

}

dP1
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