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1 Jeffreys

Let p ∈ N = {1, 2, ...}, µ ∈ R
p, and Λ ∈ S

+
p = HPD(p), the space of p×p Hermitian Positive-Definite

(hence symmetric) matrices, with inverse Σ = Λ−1. Then the log likelihood for a simple random

sample {Xi}i≤n
iid
∼ No(µ,Λ−1) is:

ℓ(µ,Λ | x) =
n

2
log |Λ| −

1

2

n
∑

i=1

p
∑

j=1

p
∑

k=1

(Xij − µj)Λjk(Xik − µk) + c

=
n

2
log |Λ| −

1

2
tr SΛ + c (1)

where S = (X − 1µ′)′(X − 1µ′) for a vector 1 = (1, · · · , 1)′ ∈ R
n. Recall

|Λ| =

p
∑

j=1

Λjkmjk =

p
∑

k=1

Λjkmjk and Λ−1
jk = |Λ|−1mjk, (2)

where M = {mjk} is the cofactor matrix with entries (−1)j−k times the determinant |Λ−j −k| of
the (p − 1) × (p − 1) matrix constructed by removing the j’th row and k’th column from Λ. By
symmetry,

∂|Λ|

∂Λjk
=

∂

∂Λjk



Λjjmjj + 2
∑

k>j

Λjkmjk



 =

{

2mjk if j 6= k

mjj o.w.

and

∂ tr SΛ

∂Λjk
=

{

2Sjk if j 6= k

Sjj o.w.

so the Λ score is1

ZΛ :=
∂ℓ

∂Λ
=

n

2

1

|Λ|

{

2|Λ|Λ−1 − diag(|Λ|Λ−1)
}

−
1

2
{2S − diag(S)|}

= (nΛ−1 − S) − 1
2 diag

(

nΛ−1 − S
)

.
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The Fisher Information for Λ is the
(p
2

)

×
(p
2

)

matrix whose (jk), (ℓm) entry is E[ZΛZ ′
Λ]. Press

(1982, p. 79) says its determinant is proportional to |Λ|−(p+1) but I haven’t worked through that.
The p = 2 or p = 3 cases might be worth trying— Volunteers? Similarly the µ-score for fixed Λ is

Zµ :=
∂

∂µ
ℓ = Λ(X − 1µ′)′1 (3)

so the MLE is Λ̂ = nS−1 (or Σ̂ = 1
nX ′

1). The Fisher Information for µ is

Iµ = E

[

−
∂

∂µ
Zµ

]

= nΛ,

a constant (in µ), so the Jeffreys’ Rule prior distribution for µ is the improper uniform distribution
πJ(dµ) ∝ dµ on R

p.
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1Thanks to Anirban Bhattacharya and Jianyu Wang for this calculation.
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2 Conjugate Prior: The Wishart Distribution

The likelihood for a sample x =
{

X(m)
}

m≤n
⊂ R

p of size n ∈ N is

f(x | µ,Λ) = |2πΣ|−n/2 exp
{

−1
2

∑

(X(m) − µ)′Λ(X(m) − µ)
}

= |Λ/2π|n/2 exp
{

−1
2

∑

(X(m) − x̄)′Λ(X(m) − x̄) −
n

2
(x̄ − µ)′Λ(x̄ − µ)

}

∝ |Λ|
1
2 exp

{

−
n

2
(µ − x̄)′Λ(µ − x̄)

}

× |Λ|
n−1

2 exp
{

−1
2

(

∑

(X(m) − x̄)′Λ(X(m) − x̄)
)}

=

[

|Λ|
1
2 exp

{

−
n

2
(µ − x̄)′Λ(µ − x̄)

}

]

× |Λ|(n−1)/2 exp
{

−1
2 tr ΛS

}

,

where

S =
∑

m≤n

(X(m) − x̄)(X(m) − x̄)′ = X ′
[

In − 1
n1n1

′
n

]

X

where 1n is the n × 1 column vector of ones and In the n × n identity. A random matrix W
has the “Wishart distribution with scale G ∈ HPD(p) and ν > 0 degrees of freedom” (written
W ∼ Wip(G, ν)) if it has density function

p(W | G, ν) ∝ |W |(ν−p−1)/2 exp
{

−1
2 tr G−1W

}

.

The proportionality constant is pretty ugly but almost never needed—

const−1 = πp(p−1)/4 |2G|ν/2
∏

0≤j<p

Γ

(

ν − j

2

)

.

The density formula only works for ν > p degrees of freedom, but the distribution is well-defined
for all ν > 0 (it just doesn’t have a density for ν ≤ p). For example, it can be characterized by its
characteristic function

E {exp(i tr WΘ)} =
∣

∣I − 2iΘG
∣

∣

−ν/2
.

If ν is an integer and Y is a ν × p matrix whose rows are independent No(0, G) random vectors,
then

Y ′Y ∼ Wip(G, ν).

The Wishart is a p × p generalization of the univariate χ2
ν = Ga(ν/2, 1/2) distribution.

2.1 A few properties

The matrix G plays the role of a scale: if W ∼ Wip(G, ν) and C is any q×p matrix then U := CWC ′

is a q × q random matrix with distribution U ∼ Wiq(CGC ′, ν). For q = 1 with C = u′ for some
u ∈ R

p, it follows that u′Wu ∼ σ2χ2
ν = Ga

(

ν
2 , 1

2σ2

)

where σ2 = u′Gu. If G is full-rank and we choose
a p × p square-root C such that C ′C = G−1, then CWC ′ ∼ Wip(I, ν) has identity scale matrix;
conversely, if we take A such that AA′ = G and take U ∼ Wip(I, ν), then W := AUA′ ∼ Wip(G, ν).
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If we partition W ∼ Wip(G, ν) into an upper-left q × q block for some 1 ≤ q ≤ p,

W =

[

W11 W12

W21 W22

]

and similarly

G =

[

G11 G12

G21 G22

]

then

W11 ∼ Wiq(G11, ν)

is independent of

W22·1 := W22 − W21 W †
11 W12

∼ Wip−q(G22·1, ν − p + q).

If we have several independent Wishart matrices Wα ∼ Wip(G, να), all with the same dimension p
and scale G ∈ S

+
p , then their element-wise sum W+ :=

∑

α Wα is also Wishart: W+ ∼ Wip(G, ν+),
with ν+ :=

∑

α να degrees of freedom (this follows immediately from the ch.f. above).

The moments of W ∼ Wip(G, ν) are easily shown to be:

E[W ] = νG

V[Wij] = ν[g2
ij + giigjj]

Cov[Wij , Wkℓ] = ν[gikgjℓ + giℓgjk]

To see this, either use the W =
∑

XαX ′
α representation or use the log ch.f.

2.2 Bartlett Decomposition

Let U ∼ Wip(I, ν) have a Wishart distribution with identity scale, and let U = LL′ be its Cholesky
decomposition for a lower-triangular matrix

L =



















ℓ11 0 0 0 . . . 0
ℓ21 ℓ22 0 0 . . . 0
ℓ31 ℓ32 ℓ33 0 . . . 0
ℓ41 ℓ42 ℓ43 ℓ44 . . . 0
...

...
...

...
. . .

...
ℓp1 ℓp2 ℓp3 ℓp4 . . . ℓpp



















then the {ℓij} are all independent for 1 ≤ i, j ≤ p, with

ℓij ∼











0 i < j

χν−i+1 i = j

No(0, 1) i > j
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where “Y ∼ χν” means Y 2 ∼ χ2
ν , i.e., the diagonal elements are square roots of χ2 variates.

This is the preferred way to generate samples of Wip(G, ν) random matrices— usually it’s best
to parametrize models (or algorithms) in terms of the Cholesky matrix L instead of U = LL′ or
W = ALL′A′. Question: What happens if ν ≤ p − 1? For example, what if ν = 1 but p ≥ 2?

2.3 Hotelling’s T
2

Recall that the ratio t := Z/
√

Y/ν of a standard normal Z ∼ No(0, 1) random variable to the
square root of a chi-squared variate Y ∼ χ2

ν , divided by its degrees of freedom ν, has a “Student
t distribution with ν degrees of freedom.” First proved by William Gossett as part of his work
for the Guinness Brewery, this result is the key to testing hypotheses and constructing confidence

intervals for the mean µ of univariate normally-distributed data Xα
iid
∼ No(µ, σ2) when the variance

σ2 is unknown, since it is a “pivotal quantity” (one whose distribution doesn’t depend on µ or σ2)

t :=
(X − X̄)

√

S/(n − 1)

for {Xα}1≤α≤n
iid
∼ No(µ, σ2) with S :=

∑

(Xα − X̄)2 and ν = n − 1.

The square of the t ratio,

t2 =
Z2

Y 2/ν

is the ratio of two independent χ2 variables divided by their degrees of freedom, with 1 degree of
freedom in the numerator and ν in the denominator, so t2 ∼ F 1

ν has Snedecker’s F distribution.

Similarly, for a standard p-variate normal vector Z ∼ Nop(0, Ip) and Wishart W ∼ Wip(Ip, ν), the
quantity

T 2 := ν Z ′ W−1 Z

is said to have a “Hotelling’s T 2 distribution.” With a change of variables to X := µ + AZ ∼
No(µ,G) and M := AWA′ ∼ Wip(G, ν) with G = AA′, one can show that

T 2 = ν (X − µ)′ M−1 (X − µ)

again has the T 2
ν distribution with X ∼ No(µ,G) and M ∼ Wip(G, ν) independent, so T 2 is also

pivotal. Again there is a connection with the F distribution: T 2
ν = ν p

ν−p+1 F p
ν−p+1, so

ν − p + 1

p
(x − µ)′ M−1 (x − µ) ∼ F p

ν−p+1.
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