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1 An Example

Mardia et al. (1979, p. 121) reprint data from Frets (1921) giving the length
and breadth (in millimeters) of the heads of the first and second son in a
sample of n = 25 families, from a study of heredity in humans. If we assume
a multivariate normal model then the following statistics are sufficient:

Z1 = 185.72 91.481 50.753 66.875 44.267
7= ZTo = 151.12 lS _ : 52.186 49.259 33.651

T3 = 183.84 n : . 96.775 54.278 |’

T4 = 149.24 : : 44.222

the sample mean i = = % 5" X, and the sample covariance ¥ = %S where

S = Y (X — 2)(Xa — 7).

)
If we model {X,} ig No(u, ¥) for 1 < a < 25, the log likelihood function

for p and A := £ s
€ ) = 5 log [ /27 — J tr AS — Z(7 — p)AE — )

In this section we’ll consider only the “length” measurements of the two
sons, X1 and X3. We will test each of the null hypotheses

HY 2y = 180

HZ :p3 = 180

HE :py = ps = 180

against the omnibus alternative— first for known A, then for unknown. For
now we’ll follow the sampling-theory paradigm and find P-values for these



hypotheses on the basis of the n = 25 observations of the p = 2-dimensional
data [x1,x3], with summary statistics

[z =185.72 1 [91481 66.875
= |73 =183.84 22 7 166.875 96.775]

1.1 Likelihood Ratio Tests

Each of our hypotheses will be of the form “H; : 6 € ©;” for some set
©; C O of possible parameters ¢ governing the distribution of the observ-
ables through their joint pdf f(z | #). The traditional sampling-theory
approach to testing a hypothesis Hy of this form against an alternative H;
is to construct the likelihood ratio against the Null

_ supyeo, f(x0)
Suppee, /(@ |0)

B(x) :

or, equivalently, twice its logarithm, the deviance
6(x) = 2[61(x) — Lo(x)]
where

£;(2) = log sup f(x | 0)
9€®j

for j = 0,1, and “reject” Hy for sufficiently large values of B(x) (or of 6(z))—
say, for (z) > c. The significance level of the test is the maximum rejection
probability P[¢(X) > ¢ | 0] if the hypothesis is true (i.e. for § € Og), while
the “P-value” is P(x) = suppeg, P[6(X) > d(x) | 0] for the observed data
value z, the probability of observing B(x) (or §(z)) at least this large if Hy
is true.

Under suitable regularity conditions (asymptotic normality and a bit more),
if ©g C ©1 C R? with dim(©¢) = r < ¢, the asymptotic distribution of §(z)
for large sample-size n is

é(z) = Xg_,.

1.2 One-dimensional Hypotheses, known A

First consider only the first son’s head width, X7, and hypothesis H& that
its mean is iy = 180. If we are given the precision— say, o, 21 /100—



then the maximum log likelihoods under H} @ pp = 180 and its alternative
Hi: pi € R are log f(x | 0;) where §; is the MLE under the restriction
RS @j,

0= glog(A/Qﬂ) —1AS - g(j:l — 180)'A(z1 — 180)
.01 25
= glog 02—0 - %0.015 - ?(185.72 —180)'0.01(185.72 — 180)
™
N 0.01 1
0= 5 log - 50.018
and hence

6 = 261 — £g]
= nA(Z — 180)% = 0.25 x 5.72? = 8.1796

Since © is r = 0O-dimensional and ©; is ¢ = 1-dimensional, §(z) has ap-
proximately a x? distribution under the null hypothesis and so the P-value
would be approximately P[xi > 8.1796] = 2®( — v/8.1796) = 0.004236, so
the hypothesis would be rejected at level @ = 0.01. The critical values of
§(z) for rejecting at levels o = 0.01 and a = 0.05 would be 2.58% = 6.635
and 1.962 = 3.841, respectively.

Similarly, the hypothesis H3 : u3 = 180 would have
§(z) = 2[6 — 0] = nA(Z3 — 180) = 0.25 x 3.84% = 3.6864,

leading to P-value P(z) = 2®( — v/3.6864) = 0.0549, so H{ cannot be
rejected at level a = 0.05.

1.2.1 Composite Hypothesis HS’

How can we test the p = 2-dimensional hypothesis Hg : p; = p3 = 1807
Simply noting that one of the two one-dimensional hypotheses was rejected
at level @ = 0.01 is not enough to reject Hg’ at that level because of the
“multiple comparisons” issue— the probability of rejecting at least one of k
hypotheses at level o may have probability greater than « if Hy is true. By
subadditivity it can’t have probability more than k X «, though, so the naive
Bonferroni multiple-comparison correction is valid— reject Hg’ at level « if
either H} or H2 can be rejected at level a/2. Somewhat better are any of:

1. Since x1 and x3 are independent, the probability of rejecting either
at level v is [1 — (1 — 7)?] if HJ is true, which will be no more than



3.

a if we take v = 1 — 4/1 — «; thus we can reject at levels o = 0.01
or a = 0.05 if either individual hypothesis may be rejected at level
v=1—+1—a=0.00501 or 0.0253, respectively (slightly higher than
Bonferroni).

Under Hy, each of z; := v/nA(Z; —180) has a standard normal No(0, 1)
distribution, hence so too does (21 + 22)/v/2; a valid test of H3 could
be based on P-value 2®(—|(z1 + 22)/v/2|). For these data z; = 2.86
and zp = 1.92, and hence z* = (21 + 22)/v2 = 3.380 would lead to
P(z) = 7.2510~* and rejection of H.

With z; as above, under HJ the test statistic Y = (21)? + (z3)? has
a x5 distribution, leading to P(z) = exp(—Y/2) = =793 = 0.00265,
and rejection again.

1.2.2 LLR for Composite Hypothesis Hg’

A more principled approach is to compute the log likelihood ratio for the
r = O-dimensional hypothesis HS’ and its ¢ = 2-dimensional alternative:

. n n, _ _

by = 5 log [A /27| - %trAS - 5(95 — ko) A(Z — po)
n 001 0.01 0 |[91.481 66.875] 25 0.01

_ 2 _ 1 _ -

5 18 [ 0 %} 2”[ 0 0.01} [66.875 54.278] y 572 384) [ 0
n 001 0.01 0 1[91.481 66.875

w1 o o l . . . o

fi=7loe [ 0 %} 2“[ 0 0.01} [66.875 54.278] 0

and hence

§(z) = 0.25(5.72% + 3.84%) = 11.866,

leading (as in 3. above) to P(z) = exp(—11.866/2) = 0.00265.

1.2.3 Confidence Ellipses

The same calculations lead to confidence ellipses of the form

Cioa(z) = {p: n(@— )Mz —p) < ca}

0
0.01

I

5.72
3.84

|



for ¢, chosen such so that P[d(x) > ¢o | Ho] = «a; in this problem ¢, =
—2log a, so for example the 95% ellipse is

Coos = {1 : 25[(p1 — 185.72)2 /100 + (ug — 183.84)2/100] < 5.99}
={p: (1 —185.72)% + (up — 183.84)% < 23.966},

the circle of radius 4.8955 centered at [Z1, Z3]'.

1.3 Unknown Precision

Now consider the same problem with A unknown.

Lemma 1. If D € 8; and n > 0 then the function
f(G) = —nlog|G| —trG~'D

of G € 8; attains its marimum value at G = %D, and there takes the value
nplogn — nlog|D| — np.

Proof. Let D = EE' and set H := F'G™'E; then G = FH'E’, so
G| = |E||HY||E'| = |D|/|H],

and
trG'D=trG'EF =tr E'G™'E = tr H,

so we can rewrite f(G) = g(H) with
g(H) = —nlog |D| + nlog |H| — tr |H|.
Now write H = TT' with T lower-triangular; then the maximum of

g(H) = —nlog|D| +nlog|T|> — tr TT'

p
= —nlog|D|+ Y (nlogt} — 2) - > %
i=1 i>]

occurs at t =n and t;; =0, i # j, or H=nl. Then G = 1FE' =1D.



As functions of ¥ = A~!, twice the log likelihood 2¢(yu,A) is of the form
considered in Lemma(1) under both Hy and Hy; thus

Uu,N) = —%1052;277 + glog Al = S tr A[S +n(z — p)(Z — p)']

0= sup (o, A) = L(po,n (S +ndd)~') where d == (Z — p)
AePF

np n 1 , np
=——log2r — —log |—S +dd| — —
p BIT T gose 2

= sup L(p,A) = E(i,nS‘l)
pER2 AEPT
1

= —%ngw — glog ES

np
2

and hence the deviance is

d(z) = 2[6(:%,715_1) — €(po, n(S + ndd’)_l)]
=nlog|S + ndd| —nlog|S|,

a monotone increasing function §(x) = nlog R of

S+ n (@ - p) (@ —p)
= 5]
= 1+n(@—p)S™ (T —p)

=1+ LT2, where
n—1

T? .= v(Z — p)'S™(Z — p) with v :=n — 1

has Hotelling’s 777 (v) distribution, while =E@—p)'S ~1(z — p) has Snedecker’s
Ep_,. For these data,

_on-p .o 23 0.02030 —0.01403] [5.72
F_p(n—l)T 2 [5:72 3.84] —0.01403  0.02003| |3.84
= 3.947

leading to an exact P-value of P(z) = Pr[Fg > 3.947] = 0.0336, with
rejection at o = 0.05 but not at o = 0.01.

The deviance here was §(z) = nlog (1 + n(z — p)'S™'(z — pn) = 7.3768,
leading to an approximate P-value of P(z) =~ exp(—7.3768/2) = 0.025,



which would lead to the same conclusions. Confidence ellipses are again
available; for example, since P[Fg > 3.422] = 0.05 and (2/23) x 3.422 =
0.2975767, a 95% confidence set can be constructed as

Cosse) = {us (o= ys 7o - ) < 2221

!/
. p1 — 185.72 0.02030 —0.01403| w1 — 185.72 < 0.2976
n3 —183.84| |—0.01403  0.02003| |p3 — 183.84

where ¢, = 0.3422 is the appropriate critical value of the Ff;_p distribution.
This also leads to simultaneous 95% confidence intervals for all possible
linear combinations a1 + aops (for example, for [ug — pq] and [£AFE2]),
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