Hypothesis Testing

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

1 An Example

Mardia et al. (1979, p.121) reprint data from Frets (1921) giving the length and breadth (in millimeters) of the heads of the first and second son in a sample of $n=25$ families, from a study of heredity in humans. If we assume a multivariate normal model then the following statistics are sufficient:

$$
\bar{x}=\left[\begin{array}{c}
\bar{x}_{1}=185.72 \\
\bar{x}_{2}=151.12 \\
\bar{x}_{3}=183.84 \\
\bar{x}_{4}=149.24
\end{array}\right] \quad \frac{1}{n} S=\left[\begin{array}{cccc}
91.481 & 50.753 & 66.875 & 44.267 \\
\cdot & 52.186 & 49.259 & 33.651 \\
\cdot & \cdot & 96.775 & 54.278 \\
\cdot & \cdot & \cdot & 44.222
\end{array}\right],
$$

the sample mean $\hat{\mu}=\bar{x}=\frac{1}{n} \sum X_{\alpha}$ and the sample covariance $\hat{E}=\frac{1}{n} S$ where $S:=\sum\left(X_{\alpha}-\bar{x}\right)\left(X_{\alpha}-\bar{x}\right)^{\prime}$.
If we model $\left\{X_{\alpha}\right\} \stackrel{\text { iid }}{\sim} \operatorname{No}(\mu, \Psi)$ for $1 \leq \alpha \leq 25$, the \log likelihood function for μ and $\Lambda:=\Psi^{-1}$ is

$$
\ell(\mu, \Lambda)=\frac{n}{2} \log |\Lambda / 2 \pi|-\frac{1}{2} \operatorname{tr} \Lambda S-\frac{n}{2}(\bar{x}-\mu)^{\prime} \Lambda(\bar{x}-\mu)
$$

In this section we'll consider only the "length" measurements of the two sons, X_{1} and X_{3}. We will test each of the null hypotheses

$$
\begin{aligned}
H_{0}^{1}: \mu_{1} & =180 \\
H_{0}^{2}: \mu_{3} & =180 \\
H_{0}^{3}: \mu_{1} & =\mu_{3}=180
\end{aligned}
$$

against the omnibus alternative - first for known Λ, then for unknown. For now we'll follow the sampling-theory paradigm and find P-values for these
hypotheses on the basis of the $n=25$ observations of the $p=2$-dimensional data $\left[x_{1}, x_{3}\right]$, with summary statistics

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{1}=185.72 \\
\bar{x}_{3}=183.84
\end{array}\right] \quad \frac{1}{2} S=\left[\begin{array}{ll}
91.481 & 66.875 \\
66.875 & 96.775
\end{array}\right] .
$$

1.1 Likelihood Ratio Tests

Each of our hypotheses will be of the form " $H_{j}: \theta \in \Theta_{j}$ " for some set $\Theta_{j} \subset \Theta$ of possible parameters θ governing the distribution of the observables through their joint pdf $f(x \mid \theta)$. The traditional sampling-theory approach to testing a hypothesis H_{0} of this form against an alternative H_{1} is to construct the likelihood ratio against the Null

$$
B(x):=\frac{\sup _{\theta \in \Theta_{1}} f(x \mid \theta)}{\sup _{\theta \in \Theta_{0}} f(x \mid \theta)}
$$

or, equivalently, twice its logarithm, the deviance

$$
\delta(x)=2\left[\ell_{1}^{*}(x)-\ell_{0}^{*}(x)\right]
$$

where

$$
\ell_{j}(x)=\log \sup _{\theta \in \Theta_{j}} f(x \mid \theta)
$$

for $j=0,1$, and "reject" H_{0} for sufficiently large values of $B(x)$ (or of $\delta(x)$)say, for $\delta(x) \geq c$. The significance level of the test is the maximum rejection probability $\mathrm{P}[\ell(X) \geq c \mid \theta]$ if the hypothesis is true (i.e. for $\theta \in \Theta_{0}$), while the " P-value" is $P(x)=\sup _{\theta \in \Theta_{0}} \mathrm{P}[\delta(X) \geq \delta(x) \mid \theta]$ for the observed data value x, the probability of observing $B(x)$ (or $\delta(x)$) at least this large if H_{0} is true.

Under suitable regularity conditions (asymptotic normality and a bit more), if $\Theta_{0} \subset \Theta_{1} \subset \mathbb{R}^{q}$ with $\operatorname{dim}\left(\Theta_{0}\right)=r<q$, the asymptotic distribution of $\delta(x)$ for large sample-size n is

$$
\delta(x) \Rightarrow \chi_{q-r}^{2} .
$$

1.2 One-dimensional Hypotheses, known Λ

First consider only the first son's head width, X_{1}, and hypothesis H_{0}^{1} that its mean is $\mu_{1}=180$. If we are given the precision- say, $\sigma_{1}^{-2}=1 / 100-$
then the maximum log likelihoods under $H_{0}^{1}: \mu_{1}=180$ and its alternative $H_{1}: \mu_{1} \in \mathbb{R}$ are $\log f\left(x \mid \hat{\theta}_{j}\right)$ where $\hat{\theta}_{j}$ is the MLE under the restriction $\theta \in \Theta_{j}$,

$$
\begin{aligned}
\ell_{0}^{*} & =\frac{n}{2} \log (\Lambda / 2 \pi) & -\frac{1}{2} \Lambda S & -\frac{n}{2}\left(\bar{x}_{1}-180\right)^{\prime} \Lambda\left(\bar{x}_{1}-180\right) \\
& =\frac{n}{2} \log \frac{0.01}{2 \pi} & -\frac{1}{2} 0.01 S & -\frac{25}{2}(185.72-180)^{\prime} 0.01(185.72-180) \\
\ell_{1}^{*} & =\frac{n}{2} \log \frac{0.01}{2 \pi} & -\frac{1}{2} 0.01 S &
\end{aligned}
$$

and hence

$$
\begin{aligned}
\delta & =2\left[\ell_{1}^{*}-\ell_{0}^{*}\right] \\
& =n \Lambda(\bar{x}-180)^{2}=0.25 \times 5.72^{2}=8.1796
\end{aligned}
$$

Since Θ_{0} is $r=0$-dimensional and Θ_{1} is $q=1$-dimensional, $\delta(x)$ has approximately a χ_{1}^{2} distribution under the null hypothesis and so the P-value would be approximately $\mathrm{P}\left[\chi_{1}^{2}>8.1796\right]=2 \Phi(-\sqrt{8.1796})=0.004236$, so the hypothesis would be rejected at level $\alpha=0.01$. The critical values of $\delta(x)$ for rejecting at levels $\alpha=0.01$ and $\alpha=0.05$ would be $2.58^{2}=6.635$ and $1.96^{2}=3.841$, respectively.
Similarly, the hypothesis $H_{0}^{2}: \mu_{3}=180$ would have

$$
\delta(x)=2\left[\ell_{1}^{*}-\ell_{0}^{*}\right]=n \Lambda\left(\bar{x}_{3}-180\right)^{2}=0.25 \times 3.84^{2}=3.6864,
$$

leading to P-value $P(x)=2 \Phi(-\sqrt{3.6864})=0.0549$, so H_{0}^{2} cannot be rejected at level $\alpha=0.05$.

1.2.1 Composite Hypothesis H_{0}^{3}

How can we test the $p=2$-dimensional hypothesis $H_{0}^{3}: \mu_{1}=\mu_{3}=180$? Simply noting that one of the two one-dimensional hypotheses was rejected at level $\alpha=0.01$ is not enough to reject H_{0}^{3} at that level because of the "multiple comparisons" issue - the probability of rejecting at least one of k hypotheses at level α may have probability greater than α if H_{0} is true. By subadditivity it can't have probability more than $k \times \alpha$, though, so the naïve Bonferroni multiple-comparison correction is valid- reject H_{0}^{3} at level α if either H_{0}^{1} or H_{0}^{2} can be rejected at level $\alpha / 2$. Somewhat better are any of:

1. Since x_{1} and x_{3} are independent, the probability of rejecting either at level γ is $\left[1-(1-\gamma)^{2}\right]$ if H_{0}^{3} is true, which will be no more than
α if we take $\gamma=1-\sqrt{1-\alpha}$; thus we can reject at levels $\alpha=0.01$ or $\alpha=0.05$ if either individual hypothesis may be rejected at level $\gamma=1-\sqrt{1-\alpha}=0.00501$ or 0.0253 , respectively (slightly higher than Bonferroni).
2. Under H_{0}^{3}, each of $z_{i}:=\sqrt{n \Lambda}\left(\bar{x}_{i}-180\right)$ has a standard normal $\operatorname{No}(0,1)$ distribution, hence so too does $\left(z_{1}+z_{2}\right) / \sqrt{2}$; a valid test of H_{0}^{3} could be based on P-value $2 \Phi\left(-\left|\left(z_{1}+z_{2}\right) / \sqrt{2}\right|\right)$. For these data $z_{1}=2.86$ and $z_{2}=1.92$, and hence $z^{*}=\left(z_{1}+z_{2}\right) / \sqrt{2}=3.380$ would lead to $P(x)=7.2510^{-4}$ and rejection of H_{0}^{3}.
3. With z_{j} as above, under H_{0}^{3} the test statistic $Y=\left(z_{1}\right)^{2}+\left(z_{3}\right)^{2}$ has a χ_{2}^{2} distribution, leading to $P(x)=\exp (-Y / 2)=e^{-5.933}=0.00265$, and rejection again.

1.2.2 LLR for Composite Hypothesis H_{0}^{3}

A more principled approach is to compute the log likelihood ratio for the $r=0$-dimensional hypothesis H_{0}^{3} and its $q=2$-dimensional alternative:

$$
\begin{array}{rlrl}
\ell_{0}^{*} & =\frac{n}{2} \log |\Lambda / 2 \pi| & -\frac{1}{2} \operatorname{tr} \Lambda S & -\frac{n}{2}\left(\bar{x}-\mu_{0}\right) \Lambda\left(\bar{x}-\mu_{0}\right) \\
& =\frac{n}{2} \log \left|\left[\begin{array}{cc}
\frac{0.01}{2 \pi} & 0 \\
0 & \frac{0.01}{2 \pi}
\end{array}\right]\right|-\frac{1}{2} \operatorname{tr}\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.01
\end{array}\right]\left[\begin{array}{cc}
91.481 & 66.875 \\
66.875 & 54.278
\end{array}\right]-\frac{25}{2}\left[\begin{array}{ll}
5.72 & 3.84
\end{array}\right]\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.01
\end{array}\right]\left[\begin{array}{l}
5.72 \\
3.84
\end{array}\right] \\
\ell_{1}^{*} & =\frac{n}{2} \log \left\lvert\,\left[\left[\begin{array}{cc}
\frac{0.01}{2 \pi} & 0 \\
0 & \frac{0.01}{2 \pi}
\end{array}\right] \left\lvert\,-\frac{1}{2} \operatorname{tr}\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.01
\end{array}\right]\left[\begin{array}{cc}
91.481 & 66.875 \\
66.875 & 54.278
\end{array}\right]-0\right.\right.\right.
\end{array}
$$

and hence

$$
\delta(x)=0.25\left(5.72^{2}+3.84^{2}\right)=11.866
$$

leading (as in 3. above) to $P(x)=\exp (-11.866 / 2)=0.00265$.

1.2.3 Confidence Ellipses

The same calculations lead to confidence ellipses of the form

$$
C_{1-\alpha}(x)=\left\{\mu: n(\bar{x}-\mu)^{\prime} \Lambda(\bar{x}-\mu) \leq c_{\alpha}\right\}
$$

for c_{α} chosen such so that $\mathrm{P}\left[\delta(x)>c_{\alpha} \mid H_{0}\right]=\alpha$; in this problem $c_{\alpha}=$ $-2 \log \alpha$, so for example the 95% ellipse is

$$
\begin{aligned}
C_{0.95} & =\left\{\mu: 25\left[\left(\mu_{1}-185.72\right)^{2} / 100+\left(\mu_{2}-183.84\right)^{2} / 100\right] \leq 5.99\right\} \\
& =\left\{\mu:\left(\mu_{1}-185.72\right)^{2}+\left(\mu_{2}-183.84\right)^{2} \leq 23.966\right\},
\end{aligned}
$$

the circle of radius 4.8955 centered at $\left[\bar{x}_{1}, \bar{x}_{3}\right]^{\prime}$.

1.3 Unknown Precision

Now consider the same problem with Λ unknown.
Lemma 1. If $D \in \mathcal{S}_{p}^{+}$and $n>0$ then the function

$$
f(G)=-n \log |G|-\operatorname{tr} G^{-1} D
$$

of $G \in \mathfrak{S}_{p}^{+}$attains its maximum value at $G=\frac{1}{n} D$, and there takes the value $n p \log n-n \log |D|-n p$.

Proof. Let $D=E E^{\prime}$ and set $H:=E^{\prime} G^{-1} E$; then $G=E H^{-1} E^{\prime}$, so

$$
|G|=|E|\left|H^{-1}\right|\left|E^{\prime}\right|=|D| /|H|,
$$

and

$$
\operatorname{tr} G^{-1} D=\operatorname{tr} G^{-1} E E^{\prime}=\operatorname{tr} E^{\prime} G^{-1} E=\operatorname{tr} H,
$$

so we can rewrite $f(G)=g(H)$ with

$$
g(H)=-n \log |D|+n \log |H|-\operatorname{tr}|H| .
$$

Now write $H=T T^{\prime}$ with T lower-triangular; then the maximum of

$$
\begin{aligned}
g(H) & =-n \log |D|+n \log |T|^{2}-\operatorname{tr} T T^{\prime} \\
& =-n \log |D|+\sum_{i=1}^{p}\left(n \log t_{i i}^{2}-t_{i i}^{2}\right)-\sum_{i>j} t_{i j}^{2}
\end{aligned}
$$

occurs at $t_{i i}^{2}=n$ and $t_{i j}=0, i \neq j$, or $H=n I$. Then $G=\frac{1}{n} E E^{\prime}=\frac{1}{n} D$.

As functions of $\Sigma=\Lambda^{-1}$, twice the log likelihood $2 \ell(\mu, \Lambda)$ is of the form considered in Lemma(1) under both H_{0} and H_{1}; thus

$$
\begin{aligned}
\ell(\mu, \Lambda) & =-\frac{n p}{2} \log 2 \pi+\frac{n}{2} \log |\Lambda|-\frac{1}{2} \operatorname{tr} \Lambda\left[S+n(\bar{x}-\mu)(\bar{x}-\mu)^{\prime}\right] \\
\ell_{0}^{*} & =\sup _{\Lambda \in \mathcal{P}_{2}^{+}} \ell\left(\mu_{0}, \Lambda\right)=\ell\left(\mu_{0}, n\left(S+n d d^{\prime}\right)^{-1}\right) \text { where } d:=(\bar{x}-\mu) \\
& =-\frac{n p}{2} \log 2 \pi-\frac{n}{2} \log \left|\frac{1}{n} S+d d^{\prime}\right|-\frac{n p}{2} \\
\ell_{1}^{*} & =\sup _{\mu \in \mathbb{R}^{2}, \Lambda \in \mathcal{P}_{2}^{+}} \ell(\mu, \Lambda)=\ell\left(\bar{x}, n S^{-1}\right) \\
& =-\frac{n p}{2} \log 2 \pi-\frac{n}{2} \log \left|\frac{1}{n} S\right|-\frac{n p}{2}
\end{aligned}
$$

and hence the deviance is

$$
\begin{aligned}
\delta(x) & =2\left[\ell\left(\bar{x}, n S^{-1}\right)-\ell\left(\mu_{0}, n\left(S+n d d^{\prime}\right)^{-1}\right)\right] \\
& =n \log \left|S+n d d^{\prime}\right|-n \log |S|,
\end{aligned}
$$

a monotone increasing function $\delta(x)=n \log R$ of

$$
\begin{aligned}
R & =\frac{\left|S+n(\bar{x}-\mu)(\bar{x}-\mu)^{\prime}\right|}{|S|} \\
& =1+n(\bar{x}-\mu)^{\prime} S^{-1}(\bar{x}-\mu) \\
& =1+\frac{n}{n-1} T^{2}, \text { where } \\
T^{2} & :=\nu(\bar{x}-\mu)^{\prime} S^{-1}(\bar{x}-\mu) \text { with } \nu:=n-1
\end{aligned}
$$

has Hotelling's $T_{p}^{2}(\nu)$ distribution, while $\frac{n-p}{p}(\bar{x}-\mu)^{\prime} S^{-1}(\bar{x}-\mu)$ has Snedecker's F_{n-p}^{p}. For these data,

$$
\begin{aligned}
F=\frac{n-p}{p(n-1)} T^{2} & =\frac{23}{2}\left[\begin{array}{ll}
5.72 & 3.84
\end{array}\right]\left[\begin{array}{rr}
0.02030 & -0.01403 \\
-0.01403 & 0.02003
\end{array}\right]\left[\begin{array}{l}
5.72 \\
3.84
\end{array}\right] \\
& =3.947
\end{aligned}
$$

leading to an exact P-value of $P(x)=\operatorname{Pr}\left[F_{23}^{2}>3.947\right]=0.0336$, with rejection at $\alpha=0.05$ but not at $\alpha=0.01$.
The deviance here was $\delta(x)=n \log \left(1+n(\bar{x}-\mu)^{\prime} S^{-1}(\bar{x}-\mu)=7.3768\right.$, leading to an approximate P-value of $P(x) \approx \exp (-7.3768 / 2)=0.025$,
which would lead to the same conclusions. Confidence ellipses are again available; for example, since $\mathrm{P}\left[F_{23}^{2}>3.422\right]=0.05$ and $(2 / 23) \times 3.422=$ 0.2975767 , a 95% confidence set can be constructed as

$$
\begin{aligned}
C_{0.95}(x) & =\left\{\mu:(\bar{x}-\mu)^{\prime} S^{-1}(\bar{x}-\mu) \leq \frac{p c_{\alpha}}{n-p}\right\} \\
& =\left\{\mu:\left[\begin{array}{l}
\mu_{1}-185.72 \\
\mu_{3}-183.84
\end{array}\right]^{\prime}\left[\begin{array}{rr}
0.02030 & -0.01403 \\
-0.01403 & 0.02003
\end{array}\right]\left[\begin{array}{l}
\mu_{1}-185.72 \\
\mu_{3}-183.84
\end{array}\right] \leq 0.2976\right\}
\end{aligned}
$$

where $c_{\alpha}=0.3422$ is the appropriate critical value of the F_{n-p}^{p} distribution. This also leads to simultaneous 95% confidence intervals for all possible linear combinations $\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$ (for example, for $\left[\mu_{2}-\mu_{1}\right]$ and $\left[\frac{\mu_{1}+\mu_{2}}{2}\right]$).

References

Frets, G. P. (1921), "Heredity of head form in man," Genetica, 3, 193-384.
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, New York, NY: Academic Press.

