
Principal Components Analysis

Robert L. Wolpert

Department of Statistical Science

Duke University, Durham, NC, USA

1 Population PCA

Let X be an n× p matrix whose rows are iid random vectors Xi· with mean

µ′ ∈ R
p and covariance Σ ∈ S

p
+— for example, they might be (Xi·)

′ iid∼
No(µ,Σ). For many problems (such as multivariate regression of some Y on
X) we might wish to reduce the dimension p of these rows. For example,
if we have a vector of p = 1000 possible explanatory variables about each
individual, we may hope that a small subset of these or perhaps a few
different linear combinations of these will capture most of the information
in X.

For any vector α ∈ R
p the random vector z = Xα ∈ R

n will have iid entries
zi whose means and variances are

E[zi] = µ′α V[zi] = α′Σα

If the values X·j don’t vary much from µj for some fixed j ∈ b1 : p then
the jth column won’t be very helpful in regression (or similar) problems;
similarly if a linear combination z = Xα has small variance then it won’t
contribute much. Thus we consider finding such linear combinations with
the maximal variance as candidates for further study.

Of course the variance α′Σα can be made as large as desired by taking
arbitrarily large values for αi; by restricting to some bounded set of αs we
can make the problem of finding the “best” vectors α well-posed. Set:

λ1 = sup
{

α′Σα : α′α = 1
}

α1 = The vector α ∈ R
p where this supremum is attained

z1 = Xα1
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and call λ1 the first principal value, α1 the first principal direction, and z1

the first principal component of X.

We can find α1 and λ1 by solving the constrained optimization problem
above using method of Lagrange Multipliers, seeking a stationary value for
the Lagrangian

L(α, λ) := α′Σα + λ[1 − α′α]

∂

∂α
L = 2Σα − 2λα

= 0 implies Σα = λα;

∂

∂λ
L = 1 − α′α

= 0 implies α′α = 1, whereupon

α′Σα = α′[λα] = λ.

Thus the solution is for λ1 to be the largest eigenvalue of the positive-definite
matrix Σ, and for α1 to be a corresponding unit eigenvector.

Similarly, for 1 ≤ j ≤ p we can let λj be the jth largest (always nonnegative!)
eigenvalue, with an orthonormal set {αj} of unit eigenvectors, and call λj

the jth principal value, αj the jth principal direction, and zj = Xαj the jth
principal component of X. The eigenvalues are determined uniquely. If they
are distinct then the eigenvectors are determined uniquely up to an arbitrary
± sign; if they are not distinct, the eigenspaces are determined uniquely for
each eigenvalue but we may have some choice in picking orthonormal bases
for them.

The matrix Z = [z1z2 . . . zp] whose jth column is Xαj can be written Z =
XA where A = [α1α2 . . . αp] is an orthogonal (p×p) matrix that rotates the
rows of X in R

p so that they become uncorrelated with decreasing variances
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0:

E[Z] = 1µ′A Cov[Zij , Zkl] = δik · [A′ΣA]jl = δik · Λjl = δikδjlλj

where Λ := diag(λ1, . . . , λp) and δjk = 1 if j = k, otherwise zero. Of course
since AA′ = A′A = I we could replace X = ZA′ with Z = XA and have
the same possible linear models Y = XB +U = ZB̃ +U with B̃ = A′B; the
more interesting possibility is to replace X in our modeling or computation
with a smaller n × r matrix Zr = XAr where Ar = [α1α2 . . . αr] consists
of the first r < p columns of A. For example, replacing a regression model
“Y = XB+U” with “Y = ZrBr+U” reduces the dimension of the coefficient
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matrix from (p × n) for B to (r × n) for Br, with the hope of simplifying
modeling and analysis without much loss of predictive power.

Note that PCA is NOT invariant under scaling— if a column of X is mul-
tiplied by a constant c (for example, if we switch from measuring length
in inches to measuring it in millimeters) then its variance will change by a
factor of c2, completely changing the principal values and directions. The
customary advice is to measure each quantity in the same units, if possible,
or perhaps to standardize each to have mean zero and variance one.

Since determinants and traces are invariant under orthogonal conjugation,
tr Σ =

∑

λj and |Σ| =
∏

λj are frequently viewed as summaries of the
variability of the {Xij}.

1.1 Example: Two by Two

Consider the standardized 2 × 2 case with p = 2 and constant variance
E[(Xij − µj)

2] = 1. If we denote the covariance (also correlation) by ρ =
E[(Xi1 − µ1) (Xi2 − µ2)], then the covariance matrix is

Σ =

[

1 ρ
ρ 1

]

If ρ ≥ 0 then the ordered eigenvalues are λ1 = (1+ρ) and λ2 = (1−ρ), with
normalized eigenvectors α1 = (1, 1)′/

√
2 (proportional to the unweighted

mean (X·1 + X·2)/2) and α2 = (1,−1)′/
√

2 (proportional to the difference
(X·1−X·2)/2). If ρ < 0 then the same ev’s and EV’s appear, but their order
is reversed.

2 Sample PCA

In practice of course one rarely knows Σ, and so rarely can compute the
necessary ev’s {λj} and EV’s {αj} as in Section (1). With a sufficiently
large sample-size n, however, one can estimate the mean and covariance of
Xi· by

µ̂ = x̄ =
1

n

∑

i≤n

Xi· ∈ R
p Σ̂ =

1

n
(X − 1x̄′)′ (X − 1x̄′) ∈ S

p
+,

and, from these, the ev’s and EV’s {λj} and {αj} of Σ̂ by those of Σ̂:
{

λ̂j

}

and {α̂j}
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to construct the empirical or sample principal components

{ẑj = Xα̂j} .

The “fraction of variation explained by the first r PC’s” is

Fr =

∑

i≤r λ̂j
∑

i≤p λ̂j

,

a fraction that ranges from something over 1/p up to 1; it’s customary to
plot this and choose r to be the smallest value for which Fr exceeds some
comforting value like 90% or 99%.

If the eigenvalues {λ1 > λ2 > · · · > λp > 0} of Σ are distinct and strictly

positive, then the estimates are consistent and asymptotically efficient:

Theorem 1. Under the stated conditions, for each 1 ≤ j ≤ p

√

n − 1

2

λ̂j − λj

λj

⇒ No(0, 1)

[

n − 1

2

]

(λ̂i − λi)

λi

(λ̂j − λj)

λj

→ 0, i 6= j

√
n − 1 (α̂j − αj) ⇒ No(0p,Dj)

as n → ∞, where

Dj = λj

∑

i6=j

λi

(λj − λi)2
αi α′

i.

With this one can construct interval estimates for {λj} or Fr.

2.1 Computation

The MATLAB (or OCTAVE) function princomp (in the Statistics toolbox)
performs sample PCA on an n × p data matrix X and returns the PCA
direction matrix A, after automatically centering the data by subtracting
column means. The eigenvalues (called scores) are also available, with the
syntax [COEFF SCORE] = princomp(X);. For p ≥ n the option ‘econ’ (for
econometrics, perhaps) returns the non-zero singular values and is much
faster. Online help is available at URL

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/princomp.html
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The R functions prcomp() and princomp() offer similar functionality; try
“?? prcomp” or go to URL
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prcomp.html

for more info. Thanks to our TA Anirban Bhattacharya for tracking down
this information.

2.2 Example using R

Copy the file dat/TestScores.dat from our website to your R directory
and run the command scores <- dget("TestScores.dat"); to construct
a data-frame consisting of scores (all measured in percent) on five tests
(Mechanics, Vectors, Algebra, Analysis, and Statistics) for each of 88 en-
gineering students1. The first two tests were closed-book; the other three
were open-book. The tests’ means and standard deviations are:

mec vec alg ana sta
38.95455 50.59091 50.60227 46.68182 42.30682
17.48622 13.14695 10.62478 14.84521 17.25559

Now the command pca <- prcomp(scores); will generate an object of
class “prcomp” that includes the square roots of the eigenvalues {λj} (you
can see a plot of the cumulative sum of eigenvalues themselves by executing
plot(0:5, c(0,cumsum(pca$sdev∧2));). Here is the rotation matrix A =
{αj}, obtained as pca$rotation (the shorter pca$rot works too):

PC1 PC2 PC3 PC4 PC5
mec -0.5054457 -0.74874751 0.2997888 -0.296184264 -0.07939388
vec -0.3683486 -0.20740314 -0.4155900 0.782888173 -0.18887639
alg -0.3456612 0.07590813 -0.1453182 0.003236339 0.92392015
ana -0.4511226 0.30088849 -0.5966265 -0.518139724 -0.28552169
sta -0.5346501 0.54778205 0.6002758 0.175732020 -0.15123239

The first principal direction is essentially the (negative) average of the test
scores; the second direction distinguishes the closed-book scores from the
open-book scores. The third principal direction suggests that the first and
last tests were a little different from the others (easier or harder?); these
three represent about 90% of the variability of students’ scores.

Many authors recommend standardizing the data by replacing each column
X·j (the jth test, in this example) with (X·j − X̄j)/sj . Here this will reduce
the role of the first and fifth tests (which had higher sample variances) and

1These data first appeared as Table 1.2.1 in Multivariate Analysis by Mardia, Kent &

Bibby; they’re available in digital format as variable scor in the R package bootstrap.
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increase that of the third. In R this can be accomplished simply by adding
the argument “,scale=TRUE” to the prcomp() function; the result is:

PC1 PC2 PC3 PC4 PC5
mec -0.3996045 -0.6454583 0.62078249 -0.1457865 -0.1306722
vec -0.4314191 -0.4415053 -0.70500628 0.2981351 -0.1817479
alg -0.5032816 0.1290675 -0.03704901 -0.1085987 0.8466894
ana -0.4569938 0.3879057 -0.13618182 -0.6662561 -0.4221885
sta -0.4382444 0.4704545 0.31253342 0.6589164 -0.2340223

Again the first and second PC are essentially the average (now standardized)
test score and the difference between open-book and closed-book scores.

The fractional cumulative total variation of the first r PC’s can be found
most easily by:

> pca <- prcomp(scores, scale=TRUE);

> summary(pca);

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.784 0.860 0.667 0.6228 0.4966

Proportion of Variance 0.636 0.148 0.089 0.0776 0.0493

Cumulative Proportion 0.636 0.784 0.873 0.9507 1.0000

or can be shown as a plot by:

> plot(0:5, c(0,cumsum(pca$sdev^2))/sum(pca$sdev^2),

cex.lab=1.3, cex.axis=1.3,

xlab="Number r of Principal Components",

ylab=expression(paste("Fraction ", F[r],

" of explained variation")));

> abline(h=0.90, lty=2);

generating the plot:
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Since the first three PC’s capture 87% of the variability, and the first four
95%, it is tempting to proceed with a reduced model with only r = 3 or 4
variables. How will this affect the analysis?

2.2.1 Correlation and Variable Elimination

First some computation. The covariance between the jth test score and the
kth principal component is the jkth element of the covariance matrix (for
any fixed 1 ≤ i ≤ n)

E(X ′
i· − µ)(Zi· − µ′A) = E(X ′

i· − µ)(Xi· − µ′)A

= ΣA = (AΛA′)A

= AΛ,

where (as before) Λ = diag(λ1, . . . , λp) and A = [α1, . . . , αp]. The variances
of Xij and Zik are σjj and λk, respectively, so the correlation is

ρjk := Cor(Xij , Zik) = Ajkλk/
√

σjjλk = Ajk

√

λk/σjj
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The number ρ2
jk is often described as the “proportion of the jth variable’s

variation explained by the kth PC” and, since the {zk} are uncorrelated, the
proportion explained by any set K of indices is just the sum

ρ2
jK =

∑

k∈K

ρ2
jk =

1

σjj

∑

k∈K

A2
jkλk

which we must typically estimate from the sample by

r2
jK =

1

σ̂jj

∑

k∈K

Â2
jkλ̂k. (1)

When K includes all indices the sum is the jjth entry of Σ̂ = ÂΛ̂Â′ or
σ̂jj, making r2

jK one. For the test data, for example, since the data were

standardized (so σ̂jj ≡ 1), r2
jk is given by

> r.jk <- pca$rot %*% diag(pca$sd);

> LastTwo <- r.jk[,4:5]^2;

> cbind(LastTwo, sum=apply(LastTwo,1,sum));

PC4 PC5 sum

mec 0.008244153 0.004210587 0.01245474

vec 0.034477637 0.008145448 0.04262309

alg 0.004574680 0.176776522 0.18135120

ana 0.172184331 0.043953070 0.21613740

sta 0.168411575 0.013504879 0.18191645

which show that removing the last one or two PC’s affects the five tests
disproportionately— 18% of the Algebra test’s variability is captured by
the last (5th) PC alone, and about a fifth of that of the three open-book
tests (Algebra, Analysis and Statistics) are captured by the last two PC’s,
so a reduced analysis will rest much more on the (closed-book) Mechanics
and Vectors tests than on the other three tests. It’s a matter of judgment
(and not of statistical science) whether or not this is acceptable.
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