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1 Factor Models

The multivariate regression model Y = XB+U expresses each row Yi· ∈ R
p

as a linear combination Xi·B of the q columns of X, plus some mean-zero
random error Ui·. Perhaps fewer than q terms would suffice to predict Y
adequately or, more realistically, perhaps some number m < q of linear
combinations of the columns ofX would suffice. That is the essence of Factor
Analysis, a method proposed in 1904 by psychologist Charles Spearman in
his effort to show that all measures of mental ability (mathematical skill,
vocabulary, other verbal skills, artistic skills, logical reasoning ability, etc.)
could be explained by a single quantity he called g for “general intelligence”
(also the idea behind IQ). The same goal comes up in many application
areas— to explain some rather large number q of measurements in terms
of a much smaller number m. An extreme example of recent importance is
the search for “genes” within DNA sequence data where q might be many
thousands, much larger than the number n of subjects— a challenge for the
traditional multivariate tools, leading to the development of “data mining”
methodology.

The simplest possibility would be for most of the variability of Xi· to be
explained by a linear relation to a small number m of “factors,” an idea we
now pursue. For a nice introduction from a social scientist’s perspective,
see Richard Darlington’s Cornell notes at http://www.psych.cornell.edu/

Darlington/factor.htm. An interesting misuse of FA was used to design
Duke’s abysmal Course Evaluation Forms.
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1.1 A Single Vector

Let X ∈ R
p be a random vector with mean µ ∈ R

p and covariance Σ ∈ S
p
+

and let m ∈ N. X is said to follow a “m-factor model” if we can write

X = Λf + µ+ u (1)

for some constant (p × m) matrix Λ (the “loading matrix”) and random
vectors f ∈ R

m (the “factors”) and u ∈ R
p. The elements of f are called

“common factors”, while those of u are (specific or) “unique factors” or
“errors.” Of course this will get more interesting below when we have more
than one vector X.

Without any loss of generality we may insist that:

E[f ] = 0 Cov[f ] = Ef f ′ = I

E[u] = 0 Cov[u] = Euu′ = Ψ = diag(ψ11, . . . , ψpp)

Cov[f, u] = Ef u′ = 0

It follows that the covariance Σ = E(X − µ)(X − µ)′ may be expressed

Σ = ΛΛ′ + Ψ (2)

as the sum of a common component and a unique component.

Even if a m-factor model holds for X, it is not unique— for any (m ×m)
orthogonal matrix G, we can re-write Equation (1) as

X = ΛG′Gf + u+ µ

with common factorGf (also with mean E[Gf ] = 0 and covariance E[Gff ′G′] =
I). For fixed Ψ, this is the only indeterminacy— i.e., once Ψ is fixed then
Λ is determined up to an orthogonal rotation. The indeterminacy can be
resolved (if desired) by imposing some arbitrary 1

2
m× (m− 1)-dimensional

linear constraint, like insisting that Λ′Ψ−1Λ be diagonal or filling Λ with as
many zeros as possible.

Does every covariance satisfy Equation (2), or is there anything special about
factor models? In general, the dimension of the set of possible covariance
matrices Σ ∈ S

p
+ is p(p + 1)/2 (for example, that’s the number of non-zero

entries in the Cholesky decomposition of a positive definite matrix), while
Σ satisfying Equation (2) is determined by the pm elements of Λ and the
p diagonal elements of Ψ. Insisting that the (m × m) symmetric matrix

2



Λ′Ψ−1Λ be diagonal introduces an additional m(m− 1)/2 constraints, so Σ
lies in a set whose dimension is

s =

{

p(p+ 1)

2

}

−

{

pm+ p−
m(m− 1)

2

}

=
(p−m)2 − (p+m)

2
(3)

smaller than that of S
p
+ (if, as usual, s > 0), making “m-Factor Model” a

genuine distinction. Note s > whenever m < p+ 1

2
−

√

2p + 1/4.

1.2 Fitting the Model

If s < 0 in Equation (3) above then there are infinitely-many solutions Λ,Ψ
to Equation (2), and “the factor model” isn’t well-defined. For s = 0 there’s
(typically) a unique solution; for s > 0 there will typically be no exact

solutions, but we can try for an approximate fit.

Let’s now suppose we have n iid random vectors X ′
i· each satisfying Equa-

tion (1), assembled as the rows of an (n× p) matrix X.

Since µ is of little interest here we estimate it by µ̂ = x̄ = 1

nX
′
1, and as

usual estimate Σ by its MLE (for a normal model)

Σ̂ =
1

n
(X − 1x̄′)′(X − 1x̄′); (4)

now the goal is to find m, a (p×m) matrix Λ̂, and a diagonal matrix Ψ̂ ∈ S
m
+

that satisfy
Σ̂ ≈ Λ̂Λ̂′ + Ψ̂. (5)

For any proposed Λ̂ we can satisfy Equation (5) on the diagonals exactly by
setting each

ψ̂jj := σ̂jj − (Λ̂Λ̂′)jj = σ̂jj −
∑

ℓ

λ̂2
jℓ (6)

(assuming that’s non-negative), so we now turn to findingm and Λ̂ ∈ R
p×m.

The usual practice is to find the smallest value of m that seems tenable for
a given data set, and then to estimate Λ̂ (and hence Ψ̂) for that m.

Since the Factor model of Equation (1) is invariant under changing the loca-
tion or scale of Xi·, we now simplify the presentation by assuming that x̄ = 0

and σ̂jj = 1

n

∑

i x
2
ij = 1 (just replace X with

(

I − 1

n11
′)X

(

diag Σ̂
)−1/2

) so

now R = Σ̂ is the sample correlation matrix with diagonal entries of rjj = 1

and Equation (6) becomes ψ̂jj = 1 −
∑

ℓ λ̂
2
jℓ.
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Here’s one way to estimate Ψ and Λ, called “Principal Factor Analysis.”
Standardize as above so the rows of X have sample mean zero and sam-
ple variance one, and let R be the sample correlation matrix. Pick any

point
{

ψ0
jj

}

∈ R
m
+ as an initial estimate (a common choice is ψ0

jj = 1 −

maxk 6=j |rjk|) and construct Ψ0 := diag(
{

ψ0
jj

}

). The matrix R − Ψ0 may

not be positive-definite but it’s at least symmetric, so it has real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp, some of which will be positive if
{

ψ0
jj

}

∈ R
p
+ aren’t too

big. Let m be the number of positive eigenvalues and let Λ̂ be the (p ×m)
matrix whose m columns are the associated eigenvectors, each scaled by the
square root of its eigenvalue. Then Σ̂ = R will satisfy Equation (5). Now
set ψ̂jj = [R − Λ̂Λ̂′]jj to get the diagonal elements exactly. Very efficient
algorithms implementing this approach are built into standard statistical
software packages— for example, factanal() in R.

As an alternative approach to estimating Λ̂ and Ψ̂, we may assume a mul-
tivariate Gaussian model and maximize the log likelihood over all choices
of Λ, Ψ, or can construct joint prior distribution on them and evaluate the
posterior mean using MCMC.

2 Example

Psychologists often use Factor Analysis in an effort to “explain” the vari-
ation in a relatively high-dimensional (q) data-set by a latent relatively
low-dimensional (m) trait, like “intelligence” or “verbal and quantitative
abilities”. Here (taken from Mardia et al. (1979, Ch. 9), who excerpted it
from Spearman (1904, p. 275), the paper in which Factor Analysis was intro-
duced) is the sample correlation matrix for test scores of children on p = 3
verbal topics (Classics, English, and French):

R =





1 0.83 0.78
0.83 1 0.67
0.78 0.67 1





Note m = p + 1

2
−

√

2p + 1/4 = 1 factor will lead to s = 0 for p = 3 and
hence a unique FA model; upon solving for Λ and Ψ we find

R =





0.983
0.844
0.794





[

0.983 0.844 0.794
]

+





0.034 0 0
0 0.287 0
0 0 0.370




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exactly. One (perhaps Spearman) might then argue that abilities X ′ =
[X1,X2,X3] in Classics, English, and French all reflect a single “verbal skill”
factor f ∼ No(0, 1) through the relation

X =





0.983
0.844
0.794



 f +





U1 ∼ No(0, 0.034)
U2 ∼ No(0, 0.287)
U3 ∼ No(0, 0.370)





3 Interpretation and Dangers

The underlying idea of FA is that the information in a data set of high
dimension p may be summarized adequately by a much smaller number m
of quantities linearly-related to the original data. For example, subjects’
success in answering a large number p of questions might reflect their differ-
ences in a quite small number of variables. Spearman’s original hypothesis
was that human mental acuity could be explained by a single variable, “gen-
eral intelligence” g; current SAT tests report a three-dimensional score (it
used to be just two-dimensional). In a comic misuse of FA the questions
on early versions of Duke’s Course Evaluation forms were designed by elim-
inating questions with low loading on the first factor, on the assumption
that course “quality” was a one-dimensional quantity (with more reflection
one might expect some students to prefer more quantitative courses, oth-
ers more verbal ones; some might prefer a more intense experience, others
a broader and lighter one; some might prefer an entertaining experience
while others might prefer a penetrating one). Instead of seeking questions
that would help describe these various features of classes to help students
make informed choices, all questions were removed from draft versions of the
Course Evaluation Forms except those with a high load on the first factor,
which the administrator managing the process assumed would be overall
quality. Sigh.

Like Principal Components, Factor Analysis is often applied as a preparatory
step to reduce the dimension of a problem before some other analysis (usually
multivariate regression) is applied. If (as usual) the same data set is used to
determine the factors and for the subsequent regression, then this approach
introduces a bias that will lead to confidence intervals that are a bit too
short, and that will cover true parameter values with less than the nominal
probability (say, 95%). Probably the best alternative is Bayesian Model
Averaging (BMA), which has its own advantages and disadvantages.
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