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Let X be an n-dimensional random vector with finite covariance, and Y
an m-dimensional one. Are X and Y independent? If not, how can one
quantify the degree of dependence between them? Here’s one form of answer,
borrowed in large part from the Wikipedia.

1 Mutual Information

One classical approach from information theory is to measure the mutual

information. If the joint distribution of X and Y has a density function
f(x, y) with marginals fx(x) and fy(y), this is defined to be

I(X : Y ) =

∫∫

lg

[

f(x, y)

fx(x) fy(y)

]

f(x, y) dx dy

(here lg x ≡ log2 x = log x
log 2 ; traditionally logarithms in Information Theory

are taken to base two, so I(X : Y ) is measured in ‘bits’). A similar expression
applies to discrete random variables, with a sum replacing the integral— or,
more generally, to any joint distribution absolutely-continuous with respect
to the product of the two marginal distributions (otherwise I(X : Y ) = ∞).
It’s easy to show that I(X : Y ) ≥ 0 for all X,Y and that I(X : Y ) = 0 if
and only if X and Y are independent. The quantity I(X : Y ) is invariant
under affine changes of variables for X and Y .

For univariate normal random variables X ∼ No(µx, σ2
x) and Y ∼ No(µy, σ

2
y)

with correlation ρ, hence covariance and precision matrices

Σ =

[

σ2
x ρσxσy

ρσxσy σ2
y

]

Λ =
1

σ2
xσ2

y(1 − ρ2)

[

σ2
y −ρσxσy

−ρσxσy σ2
x

]
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we have (setting µx = µy = 0 without loss of generality)

I(X : Y ) =

∫∫

lg







[

2πσ2
xσ2

y(1 − ρ2)
]

−1/2
exp

{

−σ2
y
x2

−2ρσxσyxy+σ2
x
y2

2 σ2
xσ2

y(1−ρ2)

}

[2πσ2
x]−1/2 exp(−x2/2σ2

x)
[

2πσ2
y

]

−1/2
exp(−y2/2σ2

y)






f(x, y) dx dy

=

∫∫

lg

[

1
√

1 − ρ2
exp

{

x2

2σ2
x

+
y2

2σ2
y

−
σ2

yx
2 − 2ρσxσyxy + σ2

xy2

2 σ2
xσ2

y(1 − ρ2)

}]

f(x, y) dx dy

= −1
2 lg(1 − ρ2) +

1

log 2

{

σ2
x

2σ2
x

+
σ2

y

2σ2
y

−
σ2

yσ
2
x − 2ρσxσy ρσxσy + σ2

xσ2
y

2 σ2
xσ2

y(1 − ρ2)

}

= − log(1 − ρ2)/(2 log 2). (1)

As expected, I(X : Y ) = 0 if X ⊥⊥ Y (i.e. if ρ = 0), while I(X : Y ) → ∞ as
ρ → ±1. We’ll return to this below.

There are close links between I(X : Y ), the Kullback-Leibler divergence from
p(x, y) to px(x) py(y), and the mutual (Shannon, not Fisher) information
H(X,Y ) between X and Y .

2 Canonical Correlations

For a ∈ R
n and b ∈ R

m, what is the highest possible correlation ρ between

U = a′X and V = b′Y ? First let’s standardize by setting c = Σ
1
2
XXa and

d = Σ
1
2
Y Y b; then

ρ =
a′ΣXY b√

a′ΣXXa
√

b′ΣY Y b

=
c′Σ

−
1
2

XXΣXY Σ
−

1
2

Y Y d
√

c′c
√

d′d

so, by the Cauchy-Schwartz inequality,

ρ2 ≤
(c′AA′c) (d′d)

c′c d′d
=

c′AA′c

c′c

where

A = Σ
−

1
2

XXΣXY Σ
−

1
2

Y Y .
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The largest this can possibly be is the maximum eigenvalue λ1 of the positive-
definite matrix AA′; it’s attained when c is the (say, unit) eigenvector c1 for
AA′ and where d = d1 is proportional to A′c1 and (say) of unit length.

We call ρ1 the “first canonical correlation” and the vectors

U1 = c′1Σ
−

1
2

XXX = a′1X V1 = d′1Σ
−

1
2

Y Y Y = b′1Y

the first Canonical Components.

We can define similarly the second, third, etc. canonical correlations and
components, up to the rank of AA′, (n ∧ m).

These may be used to quantify the degree of dependence between X and Y .
For example, if all ρi = 0 for i > r, the dependence has rank (at most) r;
a classical test of that null hypothesis may be based on the asymptotic (as
the number of replicates p → ∞) χ2

ν distribution of the test statistic

Qr = −
(

p − 1 − 1
2 (m + n + 1)

)

n∧m
∑

j=r+1

log
(

1 − ρ̂2
j

)

, (2)

with degrees of freedom ν = (m − r)(n − r). As an exploratory tool, a plot
of Qr vs. r may suggest the dimensionality of the linear interdependence of
X and Y .

2.1 Back to Information

The sum in Equation (2) is just (−2 log 2) times the mutual information
I(Xr : Yr) between the projections of X and Y onto the orthogonal com-
plements of the spaces spanned by the first r canonical components (see
Equation (1)).
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