Canonical Correlations

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

Let X be an n-dimensional random vector with finite covariance, and Y an m-dimensional one. Are X and Y independent? If not, how can one quantify the degree of dependence between them? Here's one form of answer, borrowed in large part from the Wikipedia.

1 Mutual Information

One classical approach from information theory is to measure the mutual information. If the joint distribution of X and Y has a density function $f(x, y)$ with marginals $f_{x}(x)$ and $f_{y}(y)$, this is defined to be

$$
I(X: Y)=\iint \lg \left[\frac{f(x, y)}{f_{x}(x) f_{y}(y)}\right] f(x, y) d x d y
$$

(here $\lg x \equiv \log _{2} x=\frac{\log x}{\log 2}$; traditionally logarithms in Information Theory are taken to base two, so $I(X: Y)$ is measured in 'bits'). A similar expression applies to discrete random variables, with a sum replacing the integral- or, more generally, to any joint distribution absolutely-continuous with respect to the product of the two marginal distributions (otherwise $I(X: Y)=\infty$). It's easy to show that $I(X: Y) \geq 0$ for all X, Y and that $I(X: Y)=0$ if and only if X and Y are independent. The quantity $I(X: Y)$ is invariant under affine changes of variables for X and Y.
For univariate normal random variables $X \sim \operatorname{No}\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $Y \sim \operatorname{No}\left(\mu_{y}, \sigma_{y}^{2}\right)$ with correlation ρ, hence covariance and precision matrices

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right] \quad \Lambda=\frac{1}{\sigma_{x}^{2} \sigma_{y}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma_{y}^{2} & -\rho \sigma_{x} \sigma_{y} \\
-\rho \sigma_{x} \sigma_{y} & \sigma_{x}^{2}
\end{array}\right]
$$

we have (setting $\mu_{x}=\mu_{y}=0$ without loss of generality)

$$
\begin{align*}
I(X: Y) & =\iint \lg \left[\frac{\left[2 \pi \sigma_{x}^{2} \sigma_{y}^{2}\left(1-\rho^{2}\right)\right]^{-1 / 2} \exp \left\{-\frac{\sigma_{y}^{2} x^{2}-2 \rho \sigma_{x} \sigma_{y} x y+\sigma_{x}^{2} y^{2}}{2 \sigma_{x}^{2} \sigma_{y}^{2}\left(1-\rho^{2}\right)}\right\}}{\left[2 \pi \sigma_{x}^{2}\right]^{-1 / 2} \exp \left(-x^{2} / 2 \sigma_{x}^{2}\right)\left[2 \pi \sigma_{y}^{2}\right]^{-1 / 2} \exp \left(-y^{2} / 2 \sigma_{y}^{2}\right)}\right] f(x, y) d x d y \\
& =\iint \lg \left[\frac{1}{\sqrt{1-\rho^{2}}} \exp \left\{\frac{x^{2}}{2 \sigma_{x}^{2}}+\frac{y^{2}}{2 \sigma_{y}^{2}}-\frac{\sigma_{y}^{2} x^{2}-2 \rho \sigma_{x} \sigma_{y} x y+\sigma_{x}^{2} y^{2}}{2 \sigma_{x}^{2} \sigma_{y}^{2}\left(1-\rho^{2}\right)}\right\}\right] f(x, y) d x d y \\
& =-\frac{1}{2} \lg \left(1-\rho^{2}\right)+\frac{1}{\log 2}\left\{\frac{\sigma_{x}^{2}}{2 \sigma_{x}^{2}}+\frac{\sigma_{y}^{2}}{2 \sigma_{y}^{2}}-\frac{\sigma_{y}^{2} \sigma_{x}^{2}-2 \rho \sigma_{x} \sigma_{y} \rho \sigma_{x} \sigma_{y}+\sigma_{x}^{2} \sigma_{y}^{2}}{2 \sigma_{x}^{2} \sigma_{y}^{2}\left(1-\rho^{2}\right)}\right\} \\
& =-\log \left(1-\rho^{2}\right) /(2 \log 2) . \tag{1}
\end{align*}
$$

As expected, $I(X: Y)=0$ if $X \Perp Y$ (i.e. if $\rho=0$), while $I(X: Y) \rightarrow \infty$ as $\rho \rightarrow \pm 1$. We'll return to this below.
There are close links between $I(X: Y)$, the Kullback-Leibler divergence from $p(x, y)$ to $p_{x}(x) p_{y}(y)$, and the mutual (Shannon, not Fisher) information $H(X, Y)$ between X and Y.

2 Canonical Correlations

For $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$, what is the highest possible correlation ρ between $U=a^{\prime} X$ and $V=b^{\prime} Y$? First let's standardize by setting $c=\Sigma_{X X}^{\frac{1}{2}} a$ and $d=\Sigma_{Y Y}^{\frac{1}{2}} b ;$ then

$$
\begin{aligned}
\rho & =\frac{a^{\prime} \Sigma_{X Y} b}{\sqrt{a^{\prime} \Sigma_{X X} a} \sqrt{b^{\prime} \Sigma_{Y Y} b}} \\
& =\frac{c^{\prime} \Sigma_{X X}^{-\frac{1}{2}} \Sigma_{X Y} \Sigma_{Y Y}^{-\frac{1}{2}} d}{\sqrt{c^{\prime} c} \sqrt{d^{\prime} d}}
\end{aligned}
$$

so, by the Cauchy-Schwartz inequality,

$$
\rho^{2} \leq \frac{\left(c^{\prime} A A^{\prime} c\right)\left(d^{\prime} d\right)}{c^{\prime} c d^{\prime} d}=\frac{c^{\prime} A A^{\prime} c}{c^{\prime} c}
$$

where

$$
A=\Sigma_{X X}^{-\frac{1}{2}} \Sigma_{X Y} \Sigma_{Y Y}^{-\frac{1}{2}}
$$

The largest this can possibly be is the maximum eigenvalue λ_{1} of the positivedefinite matrix $A A^{\prime}$; it's attained when c is the (say, unit) eigenvector c_{1} for $A A^{\prime}$ and where $d=d_{1}$ is proportional to $A^{\prime} c_{1}$ and (say) of unit length.
We call ρ_{1} the "first canonical correlation" and the vectors

$$
U_{1}=c_{1}^{\prime} \Sigma_{X X}^{-\frac{1}{2}} X=a_{1}^{\prime} X \quad V_{1}=d_{1}^{\prime} \Sigma_{Y Y}^{-\frac{1}{2}} Y=b_{1}^{\prime} Y
$$

the first Canonical Components.
We can define similarly the second, third, etc. canonical correlations and components, up to the rank of $A A^{\prime},(n \wedge m)$.
These may be used to quantify the degree of dependence between X and Y. For example, if all $\rho_{i}=0$ for $i>r$, the dependence has rank (at most) r; a classical test of that null hypothesis may be based on the asymptotic (as the number of replicates $p \rightarrow \infty) \chi_{\nu}^{2}$ distribution of the test statistic

$$
\begin{equation*}
Q_{r}=-\left(p-1-\frac{1}{2}(m+n+1)\right) \sum_{j=r+1}^{n \wedge m} \log \left(1-\hat{\rho}_{j}^{2}\right) \tag{2}
\end{equation*}
$$

with degrees of freedom $\nu=(m-r)(n-r)$. As an exploratory tool, a plot of Q_{r} vs. r may suggest the dimensionality of the linear interdependence of X and Y.

2.1 Back to Information

The sum in Equation (2) is just $(-2 \log 2)$ times the mutual information $I\left(X_{r}: Y_{r}\right)$ between the projections of X and Y onto the orthogonal complements of the spaces spanned by the first r canonical components (see Equation (1)).

