
Introduction to Graphical Models

STA 345: Multivariate Analysis

Department of Statistical Science

Duke University, Durham, NC, USA

Robert L. Wolpert

1 Conditional Dependence

Two real-valued or vector-valued random variables X, Y are independent
for probability measure P (written: X ⊥⊥ Y [P ]) if for all sets A and B,

P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B].

For jointly discrete or jointly continuous random variables this is equivalent
to factoring of the joint probability mass function or probability density
function, respectively. The variables X and Y are conditionally independent
given a third random variable Z for probability distribution P (written:
X ⊥⊥ Y | Z [P ]) if the conditional pmf or pdf factors1 in the form:

p(x, y | z) = p(x | z) p(y | z).

This relation arises frequently in Bayesian analysis and computation; we
now explore it further. For nice discussions of conditional independence in
statistical inference see (Dawid 1979a,b, 1980) and for a more advanced view
(Dawid and Lauritzen 1993).

2 Gaussian Models

Let M be a square (p + q) × (p + q) matrix, partitioned in the form

M =

[

A B
C D

]

1More generally, X ⊥⊥ Y | Z [P ] if for each set A there exists a version of the conditional
probability P[X ∈ A | Y, Z] which is a function only of Z
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for some (p× p) A, (p× q) B, (q× p) C, and (q× q) D. Then you can verify
by multiplying that the inverse and determinant are

M−1 =

[

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

]

=

[

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

∣

∣M
∣

∣ =
∣

∣A − BD−1C
∣

∣ × |D|

= |A| ×
∣

∣D − CA−1B
∣

∣

(in each case both representations have the same value). Applying this
identity to the covariance matrix Σ for jointly Gaussian random variables
{Xi : i ∈ I ∪ J} with I ∩ J = ∅, we find that the precision matrix for XI is

ΛII =
(

ΣII − ΣIJΣ−1
JJΣJI

)−1

By an amazing coincidence, the conditional mean and variance of XI given
XJ are (as we’ve seen before):

E[XI | XJ ] = µI + ΣIJΣ−1
JJ(XJ − µJ)

V[XI | XJ ] = ΣII − ΣIJΣ−1
JJΣJI

= Λ−1
II

so if I = {α, β} and J = {α, β}c then the conditional density for Xα and Xβ ,
given XJ , will factor as the product of their individual conditional densities
(and hence they will be conditionally independent), if and only if Λαβ = 0.

Thus it’s easy to recognize or model conditional independence of Gaussian
random variables— compute the covariance matrix, take its inverse, and look
for zeros. Gaussian Markov chains will have tri-diagonal precision matrices,
for example.

The conditional dependence structure for Gaussian random variables may
be represented in the form of a graph with a circle for each of the p + q
variables, with a line connecting any pair (α, β) for which Λαβ 6= 0.

Life is more complicated outside the Gaussian world, where dependences
involving more than two variables are possible, and where correlation does
not characterize dependence.
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3 Directed Acyclic Graphs

The joint distribution of any random vector X ∈ R
n can always be repre-

sented in “DAG” form

p(dx) =

n
∏

i=1

p (dxi | pa (i))

of conditional distributions for each variable Xi given its “parents” {Xj : j ∈
pa (i)}, its immediate predecessors in a graphical representation of the dis-
tribution. At worst we can set pa (1) = ∅ and pa (i) = {1, ..., i−1} for i > 1,
where p (dx1 | ∅) denotes the marginal distribution of X1. This choice is
“worst” because the resulting graph has n(n − 1)/2 arrows pointing from
parents to children, a rather large number; the most parsimonious represen-
tations for Markov chains or for iid random variables would have n − 1 or
zero arrows, respectively.

4 Undirected Graphical Representations

Motivated at least in part by the goal of finding convenient and tractable
representations for spatial (especially lattice) random fields that have some-
thing like the familiar Markov property for processes indexed by a one-
dimensional parameter, a flurry of activity in the 20th century led to the
notions of Gibbs processes (or fields). Among the earliest was the “Ising
Model”; in its simplest form, it consists of random variables Xs taking only
the values {±1}. The random variable are usually indexed by elements s
of a lattice of integer points in R

d, regarded as a “graph” with “edges”
connecting any two “adjacent” points whose Euclidean distance from one
another is exactly one; this relation is denoted “s ∼ t” (one can construct
Ising models on essentially any graph, but this is the earliest one).

Begin with some compact set K of indices (say, a cube with sides of length
L ∈ N), containing a finite number NK of indices. For parameters α, β ∈ R,
the Ising Model assigns each possible configuration {Xs}s∈K probability

pK(x) =
1

Z

∏

s∈K

eαXs+β
P

{Xs·Xt: t∼s}, (1)

where Z = Z(α, β) is chosen so that the sum of the probabilities of all 2NK

possible states will be one. The parameter α influences the mean (α > 0 if
and only if each E[Xs] > 0), while β determines the tendency for neighbors to
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agree— as β → ∞ the distribution becomes concentrated on configurations
where every Xs has the same value, with expectation tanh(αNK) (so ±1 are
equally likely if α = 0). The system shows interesting behaviour as K → Z

d.
Its inventor Ising showed that there is a unique limiting measure as K → Z

in dimension d = 1, and conjectured that would also hold in dimensions
d ≥ 2. He was wrong (but still got the system named after himself!).

One interpretation of Equation (1) is that any specific configuration has
“energy” H(x) = −α

∑

s Xs−β
∑

s∼t XsXt, and tries to stay in “low energy
states” (where neighboring Xs’s agree) with high probability. Now 2β is the
“energy per discordance” (often written 1/kT , where T is interpreted as
“absolute temperature” and k is called Boltzmann’s constant), and α is
viewed as the “external field”.

The constant Z is “intractable” (very difficult to calculate numerically, even
with huge computational resources) for even moderately-sized configura-
tions, but still it’s easy to simulate samples from this distribution. This is
because of the particularly simple graphical structure of the distribution—
the conditional distribution of any Xs, given all the other sites {Xt : t 6= s},
depends only on the 2d nearest-neighbors. It’s trivial to draw a sample of
Xs with this conditional distribution; and, over a hundred years ago, it was
recognized that repeatedly replacing each Xs with a random draw from this
conditional distribution (the original Gibbs sampler) would converge to a
random draw from the Ising model.

Much of Graphical Models may be viewed as a program to repeat this success
of the Ising model with more general distributions of the form p(x) ∝ exp

(

−
H(x)

)

, where H(x) =
∑

Uc(xc) is the sum of terms associated with subsets
c of indices.

4.1 Hammersley-Clifford

In 1971 John Hammersley and Peter Clifford wrote but did not publish a
seminal paper presenting a very general graph-theoretic characterization of
joint probability distributions that generalizes the Ising model’s structure.
Besag (1974) is usually credited with the first published proof (which we
follow below), but an alternate approach based on the Möbius Inversion
Theorem was taken independently by Grimmett (1973) at about the same
time.

Let x = (X1, ...,Xn) be a random vector with a joint density function p(x)
with respect to some dominating measure (such as counting measure for
discrete random variables or Lebesgue for continuous ones) and let V =
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{v1, ..., vn} be n distinct elements from any set (for example, they could be
the integers 1...n). For vi 6= vj ∈ V write “i ∼ j” if “the distribution of Xi

depends on Xj” in the sense that the conditional density

p(xi | x(i)) =
p(x)

∫

p(x) dxi

depends on xj , where “x(i)” denotes the set of xk for k 6= i. One can show
that this is a reflexive relation, i.e., that i ∼ j ⇔ j ∼ i, so the graph G

with vertices V and edges E = {(i, j) : i ∼ j} is undirected. For example:
if {Xi} are independent then E = and G is completely disconnected; if {Xj}
is a Markov chain then E consists only of the (undirected) edges {vi, vi+1}
for 1 ≤ i < n. We say that “p(·) is Markov for G” or that “X is a Markov
random field over G.”

For now let us assume or arrange that:

1. The set X of possible values of each Xi is a finite subset of R;

2. The joint pmf p(x) is strictly positive on all of Ω = Xn;

3. Zero is in X.

4.1.1 Three Useful Equations

Let X have pdf p(x) and let Y = {Y1, ..., Yn} be another random variable
taking values in the same set X. In a minor abuse of notation we use the
same letter p(·) for all distributions below, distinguished by their arguments;
no suggestion of identical distributions is intended. By conditioning we may
write:

p(x) = p(xn | x1 . . . xn−1) p(x1 . . . xn−1)

Now multiply by one in the form 1 = p(yn | x(n))/p(yn | x(n)):

=
p(xn | x1 . . . xn−1)

p(yn | x1 . . . xn−1)
p(x1 . . . xn−1, yn).

Similarly,

p(x1 . . . xn−1, yn) = p(xn−1 | x1 . . . xn−2, yn) p(x1 . . . xn−2, yn)

=
p(xn−1 | x1 . . . xn−2, yn)

p(yn−1 | x1 . . . xn−2, yn)
p(x1 . . . xn−2, yn−1, yn).
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After n steps,

p(x) = p(y)

n
∏

i=1

p(xi | x1, . . . , xi−1, yi+1, . . . , yn)

p(yi | x1, . . . , xi−1, yi+1, . . . , yn)
. (2.2)

Applying this at any fixed point y (such as y = 0) shows that any finite-
dimensional pmf p(x) is determined uniquely by its complete conditionals
p(xi | x(i).

For x ∈ Ω set
Q(x) ≡ log {p(x)/p(0)} .

Hammersley and Clifford posed and answered the question:

What is the most general form that Q(·) may have?

Introduce the notation

xi = (x1, . . . , xi−1, 0, xi+1, . . . , xn)

for the vector x ∈ Ω with the ith component replaced by zero. Note

exp {Q(x) − Q(xi)} =
p(x)

p(xi)
=

p(xi | x(i))

p(0 | x(i))
(3.2)

depends only on the value of xi and of its neighbors {xj : j ∼ i}. Thus an
answer to the H-C question also gives the most general conditional distri-
bution of the xi’s.

Besag’s brilliant idea was to expand Q(x) in the form:

Q(x) =
∑

1≤i≤n

xiGi(xi) +
∑

1≤i<j≤n

xixjGij(xi, xj)+

+ . . . + x1x2 · · · xnG123...n(x1, . . . , xn). (3.3)

To see that this is possible, note from Eqn (3.3) that:

Q(0, . . . , 0, xi, 0, . . . , 0) = xiGi(xi)

so for each 1 ≤ i ≤ n and x ∈ X,

Gi(x) =
1

x
log

p(0, . . . , 0, x, 0, . . . , 0)

p(0)

for x 6= 0 and Gi(0) = 0. By considering successively sequences with
2, 3, 4, . . . non-zero xi’s we can solve for Gij(·, ·) on X2, Gijk(·, ·, ·) on X3,
etc.
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4.1.2 The Theorem

Now we can write the famous result as:

Theorem 1. (Hammersley-Clifford) For each subset c ⊂ {1, . . . , n} the
function Gc(xc) on X|c| vanishes in representation (3.3) unless c is a clique
of the graph G = (V,E). Subject to that constraint, the Gc(xc) are arbitrary
provided that

Z ≡

∫

exp {Q(x)} dx < ∞. (2)

Proof. Fix i = 1 (to simplify notation) and consider any ℓ 6∼ 1. By Eqn (3.3),

Q(x) − Q(x1) = x1

{

G1(x1) +
∑

1<j≤n

xjG1j(x1, xj) (3)

+
∑

1<j<k≤n

xjxkG1jk(x1, xj , xk)

+ · · · + x2x3 · · · xnG12...n(x1, x2, . . . , xn)
}

may depend only on {xk : 1 ∼ k} and, in particular, must not depend on
xℓ. If we take x such that xj = 0 for all j /∈ {1, ℓ}, then we find that

Q(x) − Q(x1) = x1 {G1(x1) + xℓG1ℓ(x1, xℓ)}

must not depend on xℓ, so necessarily G1ℓ(·) must vanish. Similarly each
Gc(·) must vanish for |c| = 3, 4, . . . , n if any i, j ∈ c with i 6∼ j, i.e., unless c
is complete. Without losing generality we may arrange that Gc = 0 unless
c is a maximal complete set, or clique, by accumulating all the terms with
Gγ(xγ) for γ ⊂ c into Gc(xc).

Conversely, any functions Gc(·) for which Q(·) satisfies Equation (2) lead to
a probability distribution p(x) = Z−1 exp {Q(x)} that is Markov for G.

4.1.3 Examples

Besag (1974) introduces a number of “auto” examples from the exponential
family— autologistic, autonormal, autoPoisson, autobinomial, and more,
based on the usual nearest-neighbor lattice graph for the integers Z

2 in
the plane (one of his discussants pleas for a hexagonal lattice instead— no
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harder conceptually, but more programming effort). For example, in the
autoPoisson model the conditional distribution of

Xi | X(i) ∼ Po(µi)

is Poisson with conditional mean

µi = exp
{

α − β
∑

j∼i

Xj

}

,

for some β ≥ 0. Note that Xi and Xj are always negatively correlated.
Even for n = 2 the marginal distributions are unavailable in closed form,
but the distribution is easy to simulate using substitution sampling (Tanner
and Wong 1987), a precursor of Gibbs Sampling (Gelfand and Smith 1990).

Much more general uses of the Hammersley-Clifford approach are now com-
mon, and graphical models have become a standard tool for modeling and
for organizing the computation necessary for inference in high-dimensional
problems. For an interesting example of trying to infer the graphical (i.e.,
conditional independence) structure from data, see (Lunagomez et al. 2009).

5 Extensions

Lauritzen (1996, Ch. 3) considers a more general graphical structure in which
vertices (corresponding to variables) are marked to indicate whether their
distributions are continuous (indicated graphically with a circle) or d iscrete
(indicated with a dot). He distinguishes several possible Markov properties
a distribution might have with respect to a graph:

(P) Pairwise Markov, in which xi ⊥⊥ xj | x(i,j) (Xi and Xj are conditionally
independent given all other variables) whenever i 6∼ j;

(L) Local Markov, if Xi ⊥⊥ {Xj : j /∈ cl (i)} | {Xj : j ∈ bd (i)};

(G) Global Markov, if {Xi : i ∈ A} ⊥⊥ {Xj : j ∈ B} | {Xk : k ∈ S} when-
ever S separates A, B.

It’s easy to show (G) ⇒ (L) ⇒ (P), and to construct examples where the
other implications fail, but with enough regularity (for example, if the joint
density has a positive continuous density with respect to a product measure)
they all coincide with each other and with
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(F) Factorisable, if the joint distribution has a density p(·) that factors as
the product

p(x) =
∏

cliques c⊆G

Gc(xc)

Conditions 1 and 3 from Section (4.1) were only used to simplify the proofs,
and are unnecessary; their wish to relax the positivity Condition 2 was
the reason Hammersley and Clifford failed to publish their original result.
As of Besag’s 1974 paper the “question of positivity” was still open, but
Moussouris (1974) gave a simple example with n = 4 variables and G a chord-
less square where positivity fails and p(x) does not factor over cliques, so this
condition is in fact necessary for the theorem (see Lauritzen (1996, Example
3.10) for a more accessible account).

Figure 1: Eight equally-likely outcomes in Moussouris’s example.

In the example the four variables Xi each take values 0, 1 with proabability
1/2 each. One of each diagonal pair has a degenerate conditional distribution
given the variables on the other diagonal, so the distribution is Markov for
the indicated graph, but one can show no H-C factorization applies.

5.0.4 Another Factorization

If X ⊥⊥ Z | Y [P ] all have density functions, then multiply the defining
relation p(x, z | y) = p(x | y) · p(z | y) by 1 = p(y)/p(y) to get the joint
density

p(x, y, z) =
p(x, y) · p(y, z)

p(y)
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as the product of marginal densities for the sets {x, y} and {y, z}, on top,
divided by the marginal density for their “separator”, on the bottom. This
“junction tree” factorization, which doesn’t require positivity, can be ex-
tended to general graphical models over “decomposible” graphs. An undi-
rected graph is decomposible if and only if it’s triangulated, i.e., if every
cycle of length longer than three has a chord, so this doesn’t apply to the
distribution of Moussouris’s example.
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