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1 Hastings’ Ratio

We begin with a derivation and review of the basic Metropolis Hastings approach to what is now
called MCMC, on an abstract measurable space. In Section (2) we move to the case of reversible-
jump MCMC schemes for Lévy processes with (nearly) arbitrary Lévy measures.

Let (0,3, P) be a probability space; we would like to construct an ergodic discrete-time Markov
chain {0'},cn taking values in © such that
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for (at least) bounded continuous functions ¢(-). We begin in Section (1.1) with the simplest possible
case: where O is a finite set © = {61, ...,0,} and where F = 29 is all possible subsets; we then
consider Euclidean space in Section (1.2), and finally Lévy random fields in Section (2).

1.1 Finite Spaces

Let P :2° — [0, 1] be a probability measure on a finite set © = {6, ..., 0, }; our goal in this section
is to construct a Markov chain on © whose stationary distribution is P(df). We begin with a
specified initial distribution P°(df), an auxilary transition kernel @ : 2® x © — [0,1] (so Q(- | 6)
is a probability measure on © for each fixed 6 € ©), and a [0, 1}-valued function A(6*,0), all to be
specified later.

Our approach will be to construct a random walk §* on © by drawing 6° ~ P%(df) from P°(df)
and at time ¢ = 0 and then, at each time-step ¢,

1. Propose a new value 0* ~ Q(d0* | 0%);
2. With probability A(0*,60"), accept the proposal and set '+ := 6*;
3. Otherwise, reject the proposal and set 9! := g%

4. Increment ¢ <— t + 1 and repeat.



Note that the distributions P°(df) and P(df), the transition kernel Q(d6* | #), and the function
A(6*%,0) are all determined (respectively) by the n-vectors and nxn matrices

p = P°({6:})
i = P({GZ})

gij = Q({05} | 0:)
= A(0; ] 6:)

S
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(note conventional ordering of 7,5 in ¢ and a differ from that of 6;,6; in @ and A). We now turn
to the selection of A.

To achieve Equation (1) we must approach equilibrium— i.e., the probability distribution P*(d6)
of ' must converge to P(df). Suppose we in fact reach (or even begin at) equilibrium— i.e., have
P[#' = 6;] = p; for each i. To maintain equilibrium with our proposed algorithm, we must have:

pj = Z pilR;j where R is our new chain’s transition matrix,
i
R — qijQij fori #j
L . .
QiiGii + Y Gik[l — aig]  fori=j
Thus
pj = ZpiQijaij + ijqjk[l—ajk]
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and so

> pigijag =Y pidjias (2)
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for each i, 5. The simplest way to achieve this is to ensure that the stronger condition of “detailed
balance” holds: for every 1,7,

Didij0ij = PjqjiGi, i.e., (3)
Aij _ Pj qji
aji  PiQij

Evidently anything of the form a;; = p; ¢;i/cij with ¢;; = ¢;; > 0 symmetric will work, provided
cij > pjqji (necessary to ensure that a;; < 1 and aj; < 1, as required for acceptance probabilities!).
One suitable choice is ¢;; := p; ¢;;+pj q;;; the smallest possible choice, leading to the largest possible
acceptance probabilities (and so the most mobile chain {6'}), is ¢;; := max(p; gij, p; ¢ji), leading to
Diqi; Di Qi
Q5 1= — T A H;j, Hij = A (4)
Pi qij V Dj i Pi qij
The general idea of constructing such a Markov chain is usually attributed to Metropolis et al.
(1953), in the course of designing the first hydrogen bomb, who only considered symmetric proposals



¢ij = ¢ji leading to a simpler acceptance probability of a;; = 1 A (p;/p;). The more general form
is due to Hastings (1970), who studied failure probabilities for dams and in honor of whom H is
called the Hastings ratio. The special case in which H = 1 (now called “Gibbs sampling”) was
(re)discovered in an image reconstructing context by Geman and Geman (1984) and in a more
general context by Gelfand and Smith (1990) (several others had similar ideas independently—
e.g., Tanner and Wong (1987) and Besag et al. (1995)). Tierney (1994) offers a particularly lucid
exposition of the different ways to construct such chains.

By construction, {6} is a stationary Markov chain on © with initial distribution P°(6;) = pY and
transition probability matrix R;;. It is easy to show that R will be transitive, irreducible, and
aperiodic if @ is on supp(P) = {0 | P({6}) > 0} (and if P°(supp(P)) = 1), so by the Perron-
Frobenius theorem (see, for example, Horn and Johnson 1990, chap. 8)

sup |pj — PO = Oj]‘ <7t
j

for some 0 < r < 1 (namely, the second-largest eigenvalue of R). This implies geometric convergence
in Equation (1).

1.2 Euclidean Spaces

A similar approach holds for state spaces © C R? with Borel sets F = B(0). Here we must specify
an initial distribution P°(df) on F and transition kernel Q(df* | 6) on F x ©; we begin with initial
value 0 ~ P°(df) and accept each proposed move from 0! to 0* ~ Q(d0* | ') with probability
LA H(6* | 0') where

_ P(do*)Q(db | 67)

~ P(d0) Qo [0)

the Radon-Nikodym derivative of two measures on © x ©— the denominator is the joint equilibrium
probability distribution of (0,0*) = (#%,6'*!), while the numerator is that of (8,0*) = (6'+1 %),
When P and @ have densities with respect to a common reference measure (such as Lebesgue
measure df on R?), this reduces to a ratio of densities

P6) Q6] 6%)
PO) Q6% 106)

H(O|0):

H(6" [ 0) := (5)

Note that H(6* | ) depends on P only through the ratio P(6*)/P(#); this is an important feature
for Bayesian posterior statistical inference, where the posterior distribution

7(d0 | X) o w(df) L(O | X)

is often given only up to an unknown proportionality constant that cancels in Equation (5).

2 Poisson and Lévy Random Fields

We now turn our attention to constructing an ergodic Markov chain {#'} whose stationary distri-
bution is absolutely continuous with respect to a Poisson random measure 6 ~ Po (V(da;)) on some



measure space (DC, B, V(d:v)), with some density function L(#). For X of the form X = R x § this
will let us generate from the posterior distribution of a Lévy random field

Ilg] = /8 o) L(do) = [ /x B(0) v 0(dvdo) = 3 dlog)o

upon observing any data Y related by a measurement-error model to 6 (represented through a
likelihood function L(#)), such as:

Normal Regression: Y (t) ~No(f(t),0?), f(t):=T[k(t,")]
Gamma Regression: Y (¢) ~Ga(f(t)p, ), f(t):=L[k(t,-)]
Poisson Regression: Y (t) ~ Po(f(t) dt), f(t) =T1k(t,)]
Survival: S(t) ~ et H(t) :=T[L1y0, ()]

The new wrinkle is that the space © of possible value of 6 is more complicated than R?. One repre-
sentation is to identify a finite integer-valued measure on X with the (superfluous but convenient)
label J along with an ordered vector {z;}o<j<s of the J (not necessarily distinct) points to which
it assigns unit mass; thus

0= J X735 0:= (J;{z;}ocjcr);
J=0

the disjoint union of the J* Cartesian power X over all integers J > 0.

2.1 Densities

Finding “densities” is more subtle here. If dz is a fixed reference measure on X (perhaps Lebesgue
measure, if X C R%), one possibility is to use

o = 11 (0) dzodzy - dzy_y
J=0

as a reference measure on ©. The Po(v(dz)) distribution with mean measure v(dz) = v(z)dz) can
then be represented

whH! v(de;) eV
P(df) = e 11 Tj = IT v(dz))
0<j<J 0<j<J
where vt = v(X), with density function (w.r.t. df)
P(0) = exp{ —v(X) —log JI+ Y logv(z;) (6)
0<j<J

Notice that in this representation the {z;} are ordered, even though P(df) is symmetric; the J!
factor accounts for the multiple labelings the same point might have.



2.2 Transitions

To implement MCMC in a multi-dimensional space like © we must “jump” back and forth among
the disjoint subspaces X”. The first implementation of such a scheme (and the name “reversible
jump MCMC”, or RJ-MCMC) appeared in (Green 1995), although our treatment is rather different.
We must build a transition probability kernel Q(df* | 8) to generate proposed moves on © that
is transitive, irreducible, and aperiodic. Transitivity requires that we be able to reach any level
X7 from any other X’; obviously it’s enough to be able to increment J > 0 and decrement J > 1
by one. Incrementing entails a probability distribution (dx) for the “birth,” which we take to
have density function $(z); movement within X/ can be built from any convenient Markov kernel
q(dz* | z) on B x X, or even from a sub-Markov kernel (i.e., one for which ¢(X | ) < 1— we just
one can always extend it to be a Markov kernel on some XD X) if we regard a step “outside” of X
as a “death.” Specify a strictly probability triplet! p = (p_,p—,p,) with p_ +p— +p, = 1, a birth
probability density f(z) on X, and a sub-Markov kernel g(dz* | z); with these in hand we describe
transitions on © as follows. Beginning at 6 = (J; {z;}o<j<s),

B Birth step: with probability p,, draw an index 0 < j < J uniformly and a new point
x* ~ B(x)dz; set
0 = (J+1; {zo,...,zj—1, 2%, 25,...,x7-1}).

D Death step: with probability p_ and J > 1, “kill” a point— draw an index 0 < j < J
uniformly and set
0" = (J-1;{®wo,...,xj—1, Tjq1,.-.,TJ-1})

M Movement step: with probability p— and J > 1, draw 0 < 5 < J uniformly and a new point
z* ~q(z* | zj)dx. If 2* € X and v(z*) > 0, set

0" = (J, {x()?‘ e ,$j_1,$*,$j+1, s 7$J—1});

if xx # X (recall the sub-Markov transition may have ¢(X | z;) < 1) or v(z*) = 0, treat this
as the death of z;, as in step D above.

Altogether the transition density w.r.t. d6 is:
B: 5piB(a*)
QO |0)=qD: J[p-+p=q (z;)] (7)
M: jp_g(z*|z)

where ¢ (z) := [1 — q(X | 2)].

2.3 Hastings Ratio

We now construct the Hastings ratio H(6* | #) of Equation(5) from the ingredients in Equa-
tions (6, 7). If L(#) is a likelihood function (or other expression for which L(0)P(d6) is proportional

! Actually it’s possible to have p = p(J) depend on J... convenient to arrange p—(0) = p—(0) = 0, for example.



to the intended stationary distribution for our chain— e.g., L = 1 to draw samples from the prior
distribution itself), the Hastings ratio is:

B x@)LO)[p +p=q (z")]
© JH1 L(O) pyBz)
N . ) J_L(0*) _ p+B(z;)
H(0"0) =D 570 porra=(@)] (8)

. v(x®) L(0%) q(zj|z*)
M: @) TO d@ )

Note that we needn’t have required that v(dz), f(dx), and ¢(dz | z*) all have densities with respect
to some specific measure dz, but we do need (dz) < v(dz); to allow “death” moves from anywhere
in X, the birth distribution 3(dz) must also have full support (so B(dz) = v(dz)). Also note that
the M step is simply the ratio of posterior densities in the (common) case of a symmetric proposal
distribution with ¢(y | ) = ¢(z | y).

3 Examples

3.1 Gamma RF in R?

The homogeneous Gamma random field I'(ds) ~ Ga(ads,3) on the unit square § = [0,1]? has
infinite Lévy measure
v(duds) = aeiﬂuufll{uw}du ds

on R x 8. To use the methods of Section (2) we must first approximate the distribution by one with
finite Lévy measure. One way is to select a small number € > 0 and construct a random field with
Lévy measure

Ve(duds) = ae*ﬁ“ufll{ux}du ds

on R x 8, with finite mass
o0
v = v (R x 8) = a/ e Py~ du = ak (Be),
€

where E;(z) := [® 27 e *dz denotes Gauss’s exponential integral function (Abramowitz and Ste-
gun 1964, p.228). We may view v, as a measure on X := Ry x § and, from a Poisson random
measure H ~ Po(ve(dz)), construct an approximate Gamma RF by setting

I‘(A):/AI‘(ds) ://RMAuN(duds)

Iy = /8 o(s)1(as) = [ /R ANy

3.1.1 Birth Steps

With a birth distribution f(dz) for x = (u,s) assigning independent exponentially distributed
magnitudes u ~ € + Ex(\) and uniformly distributed locations s ~ Un(8), the Lévy measure v and
birth distribution g are mutually absolutely continuous, with Lebesgue density functions

() = ae” a1 oesy (@) Blz) = ATV sy (@)



3.1.2 Movement Steps and Hastings Ratios

Any symmetric Markov random walk on [¢,00) X 8§ (for example, one taking independent Gaussian
steps in each of the three dimensions, with reflecting boundary conditions at u > eand at 0 < s; < 1)
yields ¢ (z) = 0 and a symmetric ¢(z* | ) = ¢(z | *); with unit likelihood L(z) = 1 this leads to

B. _ ap  en(Apu)
: X exp(Xe) p+  (J+1) u*

" _ . Xexp(e) p J uj
H(©"|0)={D: a p_ = exp((AffB)uj)

M: exp (ﬁ(uj — u*))(u]/u*)

Conversely, independent normal random walks s} | s; ~ No(s;,02) for locations (which might step
outside 8, leading to a “death”) and log-normal u* | u ~ LN(log u, 02) for magnitudes (which might
step below u < €, again leaving the domain), renders a subMarkov transition with

o) <=8ty )< [o(-22) o)

RILESRE)

g(e* | z) = *@(—log(u ))x—w(sl 81) X_(p(32 32)
g

Oyl Oy U s O O O

where z = (u,s) and z* = (u*, s*); here ¢(z) and ®(z) denote the pdf and CDF of the standard
No(0,1) distribution, respectively. Note our transition kernel g(z* | z) is subMarkov; we treat
random walk steps that lead z* ¢ § or u* < € as the death of a point at z. These (along with
L(z) = 1) let us calculate the Hastings ratio H(6* | #) of Equation (8), all that’s needed to generate
a Markov chain {6’} and hence {I''} from the intended distribution:

B. ol tp=al) exp((A-Bu")
: A exp(Xe) p+ (J+1) u*

* _ . X exp(le) py J uj
HO"[0) = {D: oo soemn)

M: exp (ﬂ(uy - u*))

4 Posterior ILM Sampling

As an alternative to the RJ-MCMC e-truncation approach of Section (2), we can use the Inverse
Lévy Measure algorithm of Wolpert and Ickstadt (1998a,b) in which a fixed number J of mass
points are generated. The classic ILM approach begins by writing a Lévy measure v on X = Ry x 8
in semidirect product form

v(dz) = vy (dr) vs(ds | u)



Now fix J € N and draw the first J event times 0 < 7 < 7» < .-+ < 77 of a unit-rate Poisson
process. Set

rj =v" (7))

sj ~vs(ds | ;)
J
T(ds) =) r;ds; (ds).
j=1

This sum with J = oo would have exactly the target Lévy distribution; since the {r;} are drawn
in decreasing order, with finite J < oo, it includes the J largest mass points and for that reason
can be more efficient than some other approximate methods. For posterior sampling, a Metropolis-
Hastings approach will be required— but, this time, with a fixed number J of mass points and so
without need for reversible jumps.

When both v, (dr) = v, (r) dr and vg(ds | u) = vs(s | u) ds have density functions (wrt arbitrary
reference measures dr and ds on Ry and 8, respectively), the prior pdf is available by change of
variables from that of the {r; = v7(r;)}:

TlyeoryTg ™~ 677‘]1{0<Tl<...<7-]}d7'1 ceedTy =
Phoeeosts o exp (= ) () - 0) Lgcr, <ocrypdr -+ drs
Slyeeoy Sy~ Vs(s1|7r1) - vs(syg|ry)dsy---dsy.

With this and the likelihood ratio in hand, a M-H scheme can be constructed with only conventional
moves of the {r;} (preserving order) and the {s;}. Block moves (in which the entire vector « is
replaced with another of the form v (7)) are a good choice in some problems. The Hastings ratio
for a move 0 — 0* for 6 = (4, 3) is

+'(7“*

Jvs(si ) (| Qe ]67)
T (r

) vs (
Jvs(sj [ ) [ QO*10)

J
* . v ¥
(o 0)= 200 3 oo [TV
j=1 !

4.1 Explicit Example: ILM for Gamma Random Fields

Again we consider the Gamma Ga(ads, ) random field on § = [0,1]?. This time we use the
ILM algorithm, with reflecting symmetric Gaussian random walk steps in s; € 8§ and log-scale
Gaussian random walk steps in r; € Ry. For this example v (r) = oE;(fr) with derivative
v (r) = —ar~te P, while Q(0 | 0*)/Q(0* | §) = [1(r}/rj), so

H(*]0) = 70) exp (a[El(,BrJ) — E1(Br7)] —i—,@Z(rj - rj)> )

Random walk steps are allowed to change the ordering of the {r;}; just sort after the proposed

move, to ensure that 7 = min {r}‘} Since E;(z) = —logz — v, for small z,

(0" | 6) = log H(0" | 0) ~ [£(6) — £(0%)] + alog(rF/rs) + B (rj —7})

where £(6) = —log L(#). A good starting point is @ = {r;}, r; = exp(—7ye — j/)/B (why?).



4.2 Explicit Example: ILM for a-Stable Random Fields

For0<a<1,pge[-1,1],v € Ry, and 6 = 0, a random measure ((ds) ~ Sta(a, 3,7ds,0) can be
constructed on (say) the unit interval [0, 1] by the ILM algorithm as

C(ds) = Z ;0505 (ds)
7<00
for 7o = 0 and _ iid
rj = (rj/vea) % 1y = m5m1] © Ex(1)
iid .

oj = (2¢; - 1), ¢~ Bi(L,(1+5)/2)
S; iy Un(8)
where ¢, = %F(a) sin %5*, or may be approximated by the first J terms of that sum. Here § = (0, 1) x
{+£1} with elements (s;,0;). For posterior sampling as in Section (4), note v,/'(r) = ycqar "1
For independent symmetric random walk (say, Gaussian) steps in r; on a log scale, and srw steps
in s; (say, Gaussian w/ reflecting bc), and o; = £1, the log Hastings ratio becomes

J J
B(O* 1 6) = £(0) = £67) +ealr7™ =75 ) + Y loglr/r}) +1og (15) Yo (oF = 0)/2,
j=1 j=1

with r; = (yca/j)Y® and o = (2¢; — 1), ¢; ~ Bi(1, (1 + 8)/2) a good starting point.
5 Dirichlet Random Fields

For any finite partition 8§ = UA; of a finite measure space (S, F, a(ds)) with ot = «(8) < oo, the
Dirichlet random field D ~ Di((ds)) assigns random variables p; = D(A;) whose joint distribution
is Dirichlet p’ ~ Di(&) with parameter vector @ = {«;}, a; = a(A;). Dirichlet RFs are frequently
used to model uncertain probability distributions, because they’re easy to interpret (the mean and
variance are ED(A) = a(A)/a(X) and VD(A) = a(A)a(A%)/a(X)?(1 + (X)), so a/a™ is the
“prior mean” and T quantifies prior precision) and trivial to compute with (they’re conjugate for
observations X; ~ D).

A Dirichlet random field can be constructed by normalizing the Gamma RF of Sec. (3.1) or (4.1):
D(A) =(A)/T(8)

for A C 8, with I'(ds) ~ Ga(a(ds), B) for any constant 3 > 0 (say, one)— the constant cancels
when we normalize.

BUT— the Dirichlet has several unfortunate features that limit its utility. One is its discreteness (D
is a discrete distribution with probability one, so even if « has a density it is certain that observations
{X,} ~ D will feature ties), and another is the constancy of its precision o, which precludes
assigning “vaguer” prior distributions in some parts of 8 than in others. The discreteness can be
overcome by taking kernel mixtures [ k(z,s)D(ds), at the expense of losing the computational
triviality, while the uniform precision can be overcome by replacing the constant § by a function
B(s) above; the same computational approach described in Section (3.1) with Lebesgue measure
replaced by «(ds) and the constant 5 by a function f(s), leading to

v(drds) = a(ds)e P r_ll{r>0}dr

will suffice to generate prior and posterior distributions for a generalization of D(ds).
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Appendix: Inference for Poisson Random Measures

Let vy(dz) be a family of finite nonnegative Borel measures on a complete separable metric space
(“Polish” space) X, indexed by € € ©. In this section we consider the problem of finding a
likelihood function for 6, upon observing a Poisson random field N (dz) ~ Po(v(dz)). Begin with
the assumption that some single o-finite Borel reference measure p(dz) dominates vy(dx) for each
f € O, and that a regular conditional probability density function exists so that

vo(dz) = v(,9) p(de)

for a Borel measurable function v : X x © — R,..

For any partition X = UA; into disjoint Borel sets with A; compact, each \;(0) = vp(A;) and
pi = p(A;) is finite. The random variables Nj = N(A;) are independent, each Poisson distributed
with mean v;(0), so the likelihood L(#) upon observing all the {/N;} would be any nonnegative
multiple of

Lo =] {-’fj(é’i)fv e—ww}
I (’/J'_W)>Nj 0

S\

Enumerate the (random and countable) support {z,} of N(dz), and let j, be the index of the
partition element Aj; containing z,. Then

- {11 ()"}

Now take successive refinements of the partition {A;} with diam(A;) — 0. Since every Polish space
is Radon, it follows that v;, (0)/p;, = ve(A;j,)/1(A},) converges to v(zy,,8), so

— e () H v(zp,0).

Note that our requirement that each v*(0) = vp(X) < co was necessary for this to be well-defined.
Also the formula remains correct even if, for some 6, vy (and hence i) has atoms; in that case some
of the {z,} may coincide. Both Bayesian and sampling-based inference about 6 now depend on the
data only through the negative log likelihood function,

£(0) = —log L(0) = v+ (0) = > _ logv(zy,0).
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