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eDuke University, Durham, NC, USAVsn 29, 2012-03-231 Hastings' RatioWe begin with a derivation and review of the basi
 Metropolis Hastings approa
h to what is now
alled MCMC, on an abstra
t measurable spa
e. In Se
tion (2) we move to the 
ase of reversible-jump MCMC s
hemes for L�evy pro
esses with (nearly) arbitrary L�evy measures.Let (�;F; P ) be a probability spa
e; we would like to 
onstru
t an ergodi
 dis
rete-time Markov
hain f�tgt2N taking values in � su
h thatlimT!1 1T X0�t<T ���t� = Z� �(�)P (d�) (1)for (at least) bounded 
ontinuous fun
tions �(�). We begin in Se
tion (1.1) with the simplest possible
ase: where � is a �nite set � = f�1; :::; �ng and where F = 2� is all possible subsets; we then
onsider Eu
lidean spa
e in Se
tion (1.2), and �nally L�evy random �elds in Se
tion (2).1.1 Finite Spa
esLet P : 2� ! [0; 1℄ be a probability measure on a �nite set � = f�1; :::; �ng; our goal in this se
tionis to 
onstru
t a Markov 
hain on � whose stationary distribution is P (d�). We begin with aspe
i�ed initial distribution P 0(d�), an auxilary transition kernel Q : 2� � � ! [0; 1℄ (so Q(� j �)is a probability measure on � for ea
h �xed � 2 �), and a [0; 1℄-valued fun
tion A(��; �), all to bespe
i�ed later.Our approa
h will be to 
onstru
t a random walk �t on � by drawing �0 � P 0(d�) from P 0(d�)and at time t = 0 and then, at ea
h time-step t,1. Propose a new value �� � Q(d�� j �t);2. With probability A(��; �t), a

ept the proposal and set �t+1 := ��;3. Otherwise, reje
t the proposal and set �t+1 := �t;4. In
rement t t+ 1 and repeat. 1



Note that the distributions P 0(d�) and P (d�), the transition kernel Q(d�� j �), and the fun
tionA(��; �) are all determined (respe
tively) by the n-ve
tors and n�n matri
esp0i := P 0�f�ig�pi := P �f�ig�qij := Q�f�jg j �i�aij := A��j j �i�(note 
onventional ordering of i; j in q and a di�er from that of �j; �i in Q and A). We now turnto the sele
tion of A.To a
hieve Equation (1) we must approa
h equilibrium| i.e., the probability distribution P t(d�)of �t must 
onverge to P (d�). Suppose we in fa
t rea
h (or even begin at) equilibrium| i.e., haveP[�t = �i℄ = pi for ea
h i. To maintain equilibrium with our proposed algorithm, we must have:pj =Xi piRij where R is our new 
hain's transition matrix,Rij = (qijaij for i 6= jqiiaii +Pk qik[1� aik℄ for i = jThus pj =Xi piqijaij +Xk pjqjk[1�ajk℄=Xi piqijaij +Xk pjqjk �Xk pjqjkajk=Xi piqijaij + pj �Xi pjqjiajiand so Xi piqijaij =Xi pjqjiaji (2)for ea
h i; j. The simplest way to a
hieve this is to ensure that the stronger 
ondition of \detailedbalan
e" holds: for every i; j, piqijaij = pjqjiaji; i.e., (3)aijaji = pj qjipi qij :Evidently anything of the form aij = pj qji=
ij with 
ij = 
ji > 0 symmetri
 will work, provided
ij � pj qji (ne
essary to ensure that aij � 1 and aji � 1, as required for a

eptan
e probabilities!).One suitable 
hoi
e is 
ij := pi qij+pj qji; the smallest possible 
hoi
e, leading to the largest possiblea

eptan
e probabilities (and so the most mobile 
hain f�tg), is 
ij := max(pi qij; pj qji), leading toaij := pj qjipi qij _ pj qji = 1 ^Hij; Hij := pj qjipi qij : (4)The general idea of 
onstru
ting su
h a Markov 
hain is usually attributed to Metropolis et al.(1953), in the 
ourse of designing the �rst hydrogen bomb, who only 
onsidered symmetri
 proposals2



qij = qji leading to a simpler a

eptan
e probability of aij = 1 ^ (pj=pi). The more general formis due to Hastings (1970), who studied failure probabilities for dams and in honor of whom H is
alled the Hastings ratio. The spe
ial 
ase in whi
h H � 1 (now 
alled \Gibbs sampling") was(re)dis
overed in an image re
onstru
ting 
ontext by Geman and Geman (1984) and in a moregeneral 
ontext by Gelfand and Smith (1990) (several others had similar ideas independently|e.g., Tanner and Wong (1987) and Besag et al. (1995)). Tierney (1994) o�ers a parti
ularly lu
idexposition of the di�erent ways to 
onstru
t su
h 
hains.By 
onstru
tion, f�tg is a stationary Markov 
hain on � with initial distribution P 0(�i) = p0i andtransition probability matrix Rij. It is easy to show that R will be transitive, irredu
ible, andaperiodi
 if Q is on supp(P ) � f� j P (f�g) > 0g (and if P 0� supp(P )� = 1), so by the Perron-Frobenius theorem (see, for example, Horn and Johnson 1990, 
hap. 8)supj ���pj � P[�t = �j℄��� � rtfor some 0 < r < 1 (namely, the se
ond-largest eigenvalue of R). This implies geometri
 
onvergen
ein Equation (1).1.2 Eu
lidean Spa
esA similar approa
h holds for state spa
es � � R
d with Borel sets F = B(�). Here we must spe
ifyan initial distribution P 0(d�) on F and transition kernel Q(d�� j �) on F��; we begin with initialvalue �0 � P 0(d�) and a

ept ea
h proposed move from �t to �� � Q(d�� j �t) with probability1 ^H(�� j �t) where H(�� j �) := P (d��)Q(d� j ��)P (d�)Q(d�� j �) ;the Radon-Nikodym derivative of two measures on ���| the denominator is the joint equilibriumprobability distribution of (�; ��) = (�t; �t+1), while the numerator is that of (�; ��) = (�t+1; �t).When P and Q have densities with respe
t to a 
ommon referen
e measure (su
h as Lebesguemeasure d� on R

d), this redu
es to a ratio of densitiesH(�� j �) := P (��)Q(� j ��)P (�)Q(�� j �) : (5)Note that H(�� j �) depends on P only through the ratio P (��)=P (�); this is an important featurefor Bayesian posterior statisti
al inferen
e, where the posterior distribution�(d� j X) / �(d�)L(� j X)is often given only up to an unknown proportionality 
onstant that 
an
els in Equation (5).2 Poisson and L�evy Random FieldsWe now turn our attention to 
onstru
ting an ergodi
 Markov 
hain f�tg whose stationary distri-bution is absolutely 
ontinuous with respe
t to a Poisson random measure � � Po��(dx)� on some3



measure spa
e �X;B; �(dx)�, with some density fun
tion L(�). For X of the form X = R � S thiswill let us generate from the posterior distribution of a L�evy random �eld�[�℄ = ZS �(�) �(d�) = ZZX �(�) � �(d� d�) =X�(�i)�iupon observing any data Y related by a measurement-error model to � (represented through alikelihood fun
tion L(�)), su
h as:Normal Regression: Y (t)�No(f(t); �2); f(t) :=�[k(t; �)℄Gamma Regression: Y (t)�Ga(f(t)�; �); f(t) :=�[k(t; �)℄Poisson Regression: Y (t)�Po(f(t) dt); f(t) :=�[k(t; �)℄Survival: S(t)� e�H(t) H(t) :=�[1f(0;t℄g(�)℄The new wrinkle is that the spa
e � of possible value of � is more 
ompli
ated than R
d. One repre-sentation is to identify a �nite integer-valued measure on X with the (super
uous but 
onvenient)label J along with an ordered ve
tor fxjg0�j<J of the J (not ne
essarily distin
t) points to whi
hit assigns unit mass; thus � := 1[J=0X

J 3 � := (J ; fxjg0�j<J);the disjoint union of the J th Cartesian power XJ over all integers J � 0.2.1 DensitiesFinding \densities" is more subtle here. If dx is a �xed referen
e measure on X (perhaps Lebesguemeasure, if X � R
d), one possibility is to used� := 1XJ=01f�Jg(�) dx0 dx2 � � � dxJ�1as a referen
e measure on �. The Po��(dx)� distribution with mean measure �(dx) = �(x)dx) 
anthen be represented P (d�) = (�+)JJ ! e��+ Y0�j<J �(dxj)�+ = e��+J ! Y0�j<J �(dxj)where �+ � �(X), with density fun
tion (w.r.t. d�)P (�) = exp8<:��(X)� log J ! + X0�j<J log �(xj)9=; (6)Noti
e that in this representation the fxjg are ordered, even though P (d�) is symmetri
; the J !fa
tor a

ounts for the multiple labelings the same point might have.

4



2.2 TransitionsTo implement MCMC in a multi-dimensional spa
e like � we must \jump" ba
k and forth amongthe disjoint subspa
es XJ . The �rst implementation of su
h a s
heme (and the name \reversiblejumpMCMC", or RJ-MCMC) appeared in (Green 1995), although our treatment is rather di�erent.We must build a transition probability kernel Q(d�� j �) to generate proposed moves on � thatis transitive, irredu
ible, and aperiodi
. Transitivity requires that we be able to rea
h any level
XJ from any other XI ; obviously it's enough to be able to in
rement J � 0 and de
rement J � 1by one. In
rementing entails a probability distribution �(dx) for the \birth," whi
h we take tohave density fun
tion �(x); movement within XJ 
an be built from any 
onvenient Markov kernelq(dx� j x) on B� X, or even from a sub-Markov kernel (i.e., one for whi
h q(X j x) � 1| we justone 
an always extend it to be a Markov kernel on some ~X � X) if we regard a step \outside" of Xas a \death." Spe
ify a stri
tly probability triplet1 p = (p�; p=; p+) with p�+p=+p+ = 1, a birthprobability density �(x) on X, and a sub-Markov kernel q(dx� j x); with these in hand we des
ribetransitions on � as follows. Beginning at � = (J ; fxjg0�j<J),B Birth step: with probability p+, draw an index 0 � j � J uniformly and a new pointx� � �(x)dx; set �� = (J+1; fx0; : : : ; xj�1; x�; xj ; : : : ; xJ�1g):D Death step: with probability p� and J � 1, \kill" a point| draw an index 0 � j < Juniformly and set �� = (J�1; fx0; : : : ; xj�1; xj+1; : : : ; xJ�1g):M Movement step: with probability p= and J � 1, draw 0 � j < J uniformly and a new pointx� � q(x� j xj) dx. If x� 2 X and �(x�) > 0, set�� = (J ; fx0; : : : ; xj�1; x�; xj+1; : : : ; xJ�1g);if x� 6= X (re
all the sub-Markov transition may have q(X j xj) < 1) or �(x�) = 0, treat thisas the death of xj, as in step D above.Altogether the transition density w.r.t. d� is:Q(�� j �) = 8>>><>>>:B : 1J+1 p+�(x�)D : 1J [p� + p=q�(xj)℄M : 1J p=q(x� j xj) (7)where q�(x) := �1� q(X j x)�.2.3 Hastings RatioWe now 
onstru
t the Hastings ratio H(�� j �) of Equation (5) from the ingredients in Equa-tions (6, 7). If L(�) is a likelihood fun
tion (or other expression for whi
h L(�)P (d�) is proportional1A
tually it's possible to have p = p(J) depend on J ... 
onvenient to arrange p�(0) = p=(0) = 0, for example.5



to the intended stationary distribution for our 
hain| e.g., L � 1 to draw samples from the priordistribution itself), the Hastings ratio is:H(�� j �) = 8>>><>>>:B : �(x�)J+1 L(��)L(�) [p�+p=q�(x�)℄p+ �(x�)D : J�(xj) L(��)L(�) p+ �(xj)[p�+p=q�(xj)℄M : �(x�)�(xj) L(��)L(�) q(xj jx�)q(x�jxj) : (8)Note that we needn't have required that �(dx), �(dx), and q(dx j x�) all have densities with respe
tto some spe
i�
 measure dx, but we do need �(dx)� �(dx); to allow \death" moves from anywherein X, the birth distribution �(dx) must also have full support (so �(dx) � �(dx)). Also note thatthe M step is simply the ratio of posterior densities in the (
ommon) 
ase of a symmetri
 proposaldistribution with q(y j x) = q(x j y).3 Examples3.1 Gamma RF in R
2The homogeneous Gamma random �eld �(ds) � Ga(�ds; �) on the unit square S = [0; 1℄2 hasin�nite L�evy measure �(du ds) = �e��uu�11fu>0gdu dson R�S. To use the methods of Se
tion (2) we must �rst approximate the distribution by one with�nite L�evy measure. One way is to sele
t a small number � > 0 and 
onstru
t a random �eld withL�evy measure ��(du ds) = �e��uu�11fu>�gdu dson R� S, with �nite mass�+� := ��(R� S) = � Z 1� e��uu�1du = �E1(��);where E1(z) := R1z x�1e�xdx denotes Gauss's exponential integral fun
tion (Abramowitz and Ste-gun 1964, p. 228). We may view �� as a measure on X := R+ � S and, from a Poisson randommeasure H � Po(��(dx)), 
onstru
t an approximate Gamma RF by setting�(A) = ZA �(ds) = ZZR+�A uN(du ds)�[�℄ = ZS �(s)�(ds) = ZZR+�S �(s)uN(du ds)3.1.1 Birth StepsWith a birth distribution �(dx) for x = (u; s) assigning independent exponentially distributedmagnitudes u � �+ Ex(�) and uniformly distributed lo
ations s � Un(S), the L�evy measure � andbirth distribution � are mutually absolutely 
ontinuous, with Lebesgue density fun
tions�(x) = �e��uu�11f[�;1)�Sg(x) �(x) = �e��(u��)1f[�;1)�Sg(x)6



3.1.2 Movement Steps and Hastings RatiosAny symmetri
 Markov random walk on [�;1)� S (for example, one taking independent Gaussiansteps in ea
h of the three dimensions, with re
e
ting boundary 
onditions at u � � and at 0 � si � 1)yields q�(x) � 0 and a symmetri
 q(x� j x) = q(x j x�); with unit likelihood L(x) � 1 this leads toH(�� j �) = 8>>><>>>:B : � p�� exp(��) p+ exp((���)u�)(J+1) u�D : � exp(��) p+� p� J ujexp((���)uj )M : exp ��(uj � u�)�(uj=u�)Conversely, independent normal random walks s�i j si � No(si; �2s) for lo
ations (whi
h might stepoutside S, leading to a \death") and log-normal u� j u � LN(log u; �2u) for magnitudes (whi
h mightstep below u < �, again leaving the domain), renders a subMarkov transition withq�(x) = 1� �� log(u=�)=�u�� ���1� s1�s �� �� s1�s��� ���1� s2�s �� �� s2�s��q(x� j x) = 1�uu�'� 1�u log(u�u )�� 1�s'�s�1 � s�1�s �� 1�s'�s�2 � s�2�s �where x = (u; s) and x� = (u�; s�); here '(z) and �(z) denote the pdf and CDF of the standardNo(0; 1) distribution, respe
tively. Note our transition kernel q(x� j x) is subMarkov; we treatrandom walk steps that lead x� =2 S or u� < � as the death of a point at x. These (along withL(x) � 1) let us 
al
ulate the Hastings ratio H(�� j �) of Equation (8), all that's needed to generatea Markov 
hain f�tg and hen
e f�tg from the intended distribution:H(�� j �) = 8>>><>>>:B : � [p�+p=q(x�)℄� exp(��) p+ exp((���)u�)(J+1) u�D : � exp(��) p+� [p�+p=q(xj)℄ J ujexp((���)uj)M : exp ��(uj � u�)�4 Posterior ILM SamplingAs an alternative to the RJ-MCMC �-trun
ation approa
h of Se
tion (2), we 
an use the InverseL�evy Measure algorithm of Wolpert and I
kstadt (1998a,b) in whi
h a �xed number J of masspoints are generated. The 
lassi
 ILM approa
h begins by writing a L�evy measure � on X = R+�Sin semidire
t produ
t form �(dx) = �u(dr) �s(ds j u)�+(r) = �u�(u;1)�� (t) = inf �r > 0 : �+(r) � t	 :7



Now �x J 2 N and draw the �rst J event times 0 < �1 < �2 < � � � < �J of a unit-rate Poissonpro
ess. Set rj = � (�j)sj � �s(ds j rj)�(ds) = JXj=1 rjÆsj (ds):This sum with J = 1 would have exa
tly the target L�evy distribution; sin
e the frjg are drawnin de
reasing order, with �nite J < 1, it in
ludes the J largest mass points and for that reason
an be more eÆ
ient than some other approximate methods. For posterior sampling, a Metropolis-Hastings approa
h will be required| but, this time, with a �xed number J of mass points and sowithout need for reversible jumps.When both �u(dr) = �u(r) dr and �s(ds j u) = �s(s j u) ds have density fun
tions (wrt arbitraryreferen
e measures dr and ds on R+ and S, respe
tively), the prior pdf is available by 
hange ofvariables from that of the f�j = �+(rj)g:�1; : : : ; �J � e��J1f0<�1<���<�Jgd�1 � � � d�J )r1; : : : ; rJ � exp �� �+(rJ)�j�+0(r1) � � � �+0(rJ )j1f0<rJ<���<r1gdr1 � � � drJs1; : : : ; sJ � �s(s1 j r1) � � � �s(sJ j rJ) ds1 � � � dsJ :With this and the likelihood ratio in hand, a M-H s
heme 
an be 
onstru
ted with only 
onventionalmoves of the frjg (preserving order) and the fsjg. Blo
k moves (in whi
h the entire ve
tor ~u isrepla
ed with another of the form � (~� )) are a good 
hoi
e in some problems. The Hastings ratiofor a move �! �� for � = (~u;~s) isH(�� j �) = L(��)L(�) 8<:e�+(rJ )��+(r�J ) JYj=1 �+0(r�j ) �s(s�j j r�j )�+0(rj) �s(sj j rj)9=; Q(� j ��)Q(�� j �) :4.1 Expli
it Example: ILM for Gamma Random FieldsAgain we 
onsider the Gamma Ga(�ds; �) random �eld on S = [0; 1℄2. This time we use theILM algorithm, with re
e
ting symmetri
 Gaussian random walk steps in sj 2 S and log-s
aleGaussian random walk steps in rj 2 R+. For this example �+(r) = �E1(�r) with derivative�+0(r) = ��r�1e��r, while Q(� j ��)=Q(�� j �) =Q(r�j =rj), soH(�� j �) = L(��)L(�) exp��[E1(�rJ )� E1(�r�J )℄ + �X(rj � r�j )� :Random walk steps are allowed to 
hange the ordering of the frjg; just sort after the proposedmove, to ensure that r�J = minnr�jo. Sin
e E1(z) � � log z � 
e for small z,h(�� j �) � logH(�� j �) � [`(�)� `(��)℄ + � log(r�J=rJ) + �X(rj � r�j )where `(�) = � logL(�). A good starting point is ~u = frjg, rj = exp(�
e � j=�)=� (why?).8



4.2 Expli
it Example: ILM for �-Stable Random FieldsFor 0 < � < 1, � 2 [�1; 1℄, 
 2 R+, and Æ = 0, a random measure �(ds) � StA(�; �; 
ds; 0) 
an be
onstru
ted on (say) the unit interval [0; 1℄ by the ILM algorithm as�(ds) = Xj<1 rj�jÆsj (ds)for �0 = 0 and rj = (�j=

�)�1=�; [�j � �j�1℄ iid� Ex(1)�j = (2�j � 1); �j iid� Bi�1; (1 + �)=2�sj iid� Un(S)where 
� = 2��(�) sin ��2 , or may be approximated by the �rst J terms of that sum. Here S = (0; 1)�f�1g with elements (sj; �j). For posterior sampling as in Se
tion (4), note �+0u (r) = 

��r���1.For independent symmetri
 random walk (say, Gaussian) steps in rj on a log s
ale, and srw stepsin sj (say, Gaussian w/ re
e
ting b
), and �j = �1, the log Hastings ratio be
omesh(�� j �) = `(�)� `(��) + 

�(r��J � r�J��) + � JXj=1 log(rj=r�j ) + log �1+�1��� JXj=1(��j � �j)=2;with rj = (

�=j)1=� and �j = (2�j � 1), �j � Bi(1; (1 + �)=2) a good starting point.5 Diri
hlet Random FieldsFor any �nite partition S = [�j of a �nite measure spa
e �S;F; �(ds)� with �+ � �(S) < 1, theDiri
hlet random �eld D � Di��(ds)� assigns random variables pj = D(�j) whose joint distributionis Diri
hlet ~p � Di(~�) with parameter ve
tor ~� = f�jg, �j = �(�j). Diri
hlet RFs are frequentlyused to model un
ertain probability distributions, be
ause they're easy to interpret (the mean andvarian
e are ED(A) = �(A)=�(X) and VD(A) = �(A)�(A
)=�(X)2(1 + �(X)), so �=�+ is the\prior mean" and �+ quanti�es prior pre
ision) and trivial to 
ompute with (they're 
onjugate forobservations Xj � D).A Diri
hlet random �eld 
an be 
onstru
ted by normalizing the Gamma RF of Se
. (3.1) or (4.1):
D(A) = �(A)=�(S)for A � S, with �(ds) � Ga��(ds); �� for any 
onstant � > 0 (say, one)| the 
onstant 
an
elswhen we normalize.BUT| the Diri
hlet has several unfortunate features that limit its utility. One is its dis
reteness (Dis a dis
rete distribution with probability one, so even if � has a density it is 
ertain that observationsfXng � D will feature ties), and another is the 
onstan
y of its pre
ision �+, whi
h pre
ludesassigning \vaguer" prior distributions in some parts of S than in others. The dis
reteness 
an beover
ome by taking kernel mixtures R k(x; s)D(ds), at the expense of losing the 
omputationaltriviality, while the uniform pre
ision 
an be over
ome by repla
ing the 
onstant � by a fun
tion�(s) above; the same 
omputational approa
h des
ribed in Se
tion (3.1) with Lebesgue measurerepla
ed by �(ds) and the 
onstant � by a fun
tion �(s), leading to�(dr ds) = �(ds)e��(s)r r�11fr>0gdrwill suÆ
e to generate prior and posterior distributions for a generalization of D(ds).9
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Appendix: Inferen
e for Poisson Random MeasuresLet ��(dx) be a family of �nite nonnegative Borel measures on a 
omplete separable metri
 spa
e(\Polish" spa
e) X, indexed by � 2 �. In this se
tion we 
onsider the problem of �nding alikelihood fun
tion for �, upon observing a Poisson random �eld N(dx) � Po��(dx)�. Begin withthe assumption that some single �-�nite Borel referen
e measure �(dx) dominates ��(dx) for ea
h� 2 �, and that a regular 
onditional probability density fun
tion exists so that��(dx) = �(x; �)�(dx)for a Borel measurable fun
tion � : X��! R+.For any partition X = [�j into disjoint Borel sets with ��j 
ompa
t, ea
h �j(�) � ��(�j) and�j � �(�j) is �nite. The random variables Nj � N(�j) are independent, ea
h Poisson distributedwith mean �j(�), so the likelihood L(�) upon observing all the fNjg would be any nonnegativemultiple of L(�) =Yj ��j(�)NjNj ! e��j(�)�/ 8<:Yj ��j(�)�j �Nj9=; e�P �j(�)Enumerate the (random and 
ountable) support fxng of N(dx), and let jn be the index of thepartition element �jn 
ontaining xn. ThenL(�) = (Yn ��jn(�)�jn �Njn) e���(X)Now take su

essive re�nements of the partition f�jg with diam(�j)! 0. Sin
e every Polish spa
eis Radon, it follows that �jn(�)=�jn = ��(�jn)=�(�jn) 
onverges to �(xn; �), so! e���(X) Yn �(xn; �):Note that our requirement that ea
h �+(�) � ��(X) <1 was ne
essary for this to be well-de�ned.Also the formula remains 
orre
t even if, for some �, �� (and hen
e �) has atoms; in that 
ase someof the fxng may 
oin
ide. Both Bayesian and sampling-based inferen
e about � now depend on thedata only through the negative log likelihood fun
tion,`(�) = � logL(�) = �+(�)�X log �(xn; �):
LATEX'd: Mar
h 23, 201211


