
Metropolis-Hastings for L�evy Random FieldsRobert L. WolpertDepartment of Statistial SieneDuke University, Durham, NC, USAVsn 29, 2012-03-231 Hastings' RatioWe begin with a derivation and review of the basi Metropolis Hastings approah to what is nowalled MCMC, on an abstrat measurable spae. In Setion (2) we move to the ase of reversible-jump MCMC shemes for L�evy proesses with (nearly) arbitrary L�evy measures.Let (�;F; P ) be a probability spae; we would like to onstrut an ergodi disrete-time Markovhain f�tgt2N taking values in � suh thatlimT!1 1T X0�t<T ���t� = Z� �(�)P (d�) (1)for (at least) bounded ontinuous funtions �(�). We begin in Setion (1.1) with the simplest possiblease: where � is a �nite set � = f�1; :::; �ng and where F = 2� is all possible subsets; we thenonsider Eulidean spae in Setion (1.2), and �nally L�evy random �elds in Setion (2).1.1 Finite SpaesLet P : 2� ! [0; 1℄ be a probability measure on a �nite set � = f�1; :::; �ng; our goal in this setionis to onstrut a Markov hain on � whose stationary distribution is P (d�). We begin with aspei�ed initial distribution P 0(d�), an auxilary transition kernel Q : 2� � � ! [0; 1℄ (so Q(� j �)is a probability measure on � for eah �xed � 2 �), and a [0; 1℄-valued funtion A(��; �), all to bespei�ed later.Our approah will be to onstrut a random walk �t on � by drawing �0 � P 0(d�) from P 0(d�)and at time t = 0 and then, at eah time-step t,1. Propose a new value �� � Q(d�� j �t);2. With probability A(��; �t), aept the proposal and set �t+1 := ��;3. Otherwise, rejet the proposal and set �t+1 := �t;4. Inrement t t+ 1 and repeat. 1



Note that the distributions P 0(d�) and P (d�), the transition kernel Q(d�� j �), and the funtionA(��; �) are all determined (respetively) by the n-vetors and n�n matriesp0i := P 0�f�ig�pi := P �f�ig�qij := Q�f�jg j �i�aij := A��j j �i�(note onventional ordering of i; j in q and a di�er from that of �j; �i in Q and A). We now turnto the seletion of A.To ahieve Equation (1) we must approah equilibrium| i.e., the probability distribution P t(d�)of �t must onverge to P (d�). Suppose we in fat reah (or even begin at) equilibrium| i.e., haveP[�t = �i℄ = pi for eah i. To maintain equilibrium with our proposed algorithm, we must have:pj =Xi piRij where R is our new hain's transition matrix,Rij = (qijaij for i 6= jqiiaii +Pk qik[1� aik℄ for i = jThus pj =Xi piqijaij +Xk pjqjk[1�ajk℄=Xi piqijaij +Xk pjqjk �Xk pjqjkajk=Xi piqijaij + pj �Xi pjqjiajiand so Xi piqijaij =Xi pjqjiaji (2)for eah i; j. The simplest way to ahieve this is to ensure that the stronger ondition of \detailedbalane" holds: for every i; j, piqijaij = pjqjiaji; i.e., (3)aijaji = pj qjipi qij :Evidently anything of the form aij = pj qji=ij with ij = ji > 0 symmetri will work, providedij � pj qji (neessary to ensure that aij � 1 and aji � 1, as required for aeptane probabilities!).One suitable hoie is ij := pi qij+pj qji; the smallest possible hoie, leading to the largest possibleaeptane probabilities (and so the most mobile hain f�tg), is ij := max(pi qij; pj qji), leading toaij := pj qjipi qij _ pj qji = 1 ^Hij; Hij := pj qjipi qij : (4)The general idea of onstruting suh a Markov hain is usually attributed to Metropolis et al.(1953), in the ourse of designing the �rst hydrogen bomb, who only onsidered symmetri proposals2



qij = qji leading to a simpler aeptane probability of aij = 1 ^ (pj=pi). The more general formis due to Hastings (1970), who studied failure probabilities for dams and in honor of whom H isalled the Hastings ratio. The speial ase in whih H � 1 (now alled \Gibbs sampling") was(re)disovered in an image reonstruting ontext by Geman and Geman (1984) and in a moregeneral ontext by Gelfand and Smith (1990) (several others had similar ideas independently|e.g., Tanner and Wong (1987) and Besag et al. (1995)). Tierney (1994) o�ers a partiularly luidexposition of the di�erent ways to onstrut suh hains.By onstrution, f�tg is a stationary Markov hain on � with initial distribution P 0(�i) = p0i andtransition probability matrix Rij. It is easy to show that R will be transitive, irreduible, andaperiodi if Q is on supp(P ) � f� j P (f�g) > 0g (and if P 0� supp(P )� = 1), so by the Perron-Frobenius theorem (see, for example, Horn and Johnson 1990, hap. 8)supj ���pj � P[�t = �j℄��� � rtfor some 0 < r < 1 (namely, the seond-largest eigenvalue of R). This implies geometri onvergenein Equation (1).1.2 Eulidean SpaesA similar approah holds for state spaes � � R
d with Borel sets F = B(�). Here we must speifyan initial distribution P 0(d�) on F and transition kernel Q(d�� j �) on F��; we begin with initialvalue �0 � P 0(d�) and aept eah proposed move from �t to �� � Q(d�� j �t) with probability1 ^H(�� j �t) where H(�� j �) := P (d��)Q(d� j ��)P (d�)Q(d�� j �) ;the Radon-Nikodym derivative of two measures on ���| the denominator is the joint equilibriumprobability distribution of (�; ��) = (�t; �t+1), while the numerator is that of (�; ��) = (�t+1; �t).When P and Q have densities with respet to a ommon referene measure (suh as Lebesguemeasure d� on R

d), this redues to a ratio of densitiesH(�� j �) := P (��)Q(� j ��)P (�)Q(�� j �) : (5)Note that H(�� j �) depends on P only through the ratio P (��)=P (�); this is an important featurefor Bayesian posterior statistial inferene, where the posterior distribution�(d� j X) / �(d�)L(� j X)is often given only up to an unknown proportionality onstant that anels in Equation (5).2 Poisson and L�evy Random FieldsWe now turn our attention to onstruting an ergodi Markov hain f�tg whose stationary distri-bution is absolutely ontinuous with respet to a Poisson random measure � � Po��(dx)� on some3



measure spae �X;B; �(dx)�, with some density funtion L(�). For X of the form X = R � S thiswill let us generate from the posterior distribution of a L�evy random �eld�[�℄ = ZS �(�) �(d�) = ZZX �(�) � �(d� d�) =X�(�i)�iupon observing any data Y related by a measurement-error model to � (represented through alikelihood funtion L(�)), suh as:Normal Regression: Y (t)�No(f(t); �2); f(t) :=�[k(t; �)℄Gamma Regression: Y (t)�Ga(f(t)�; �); f(t) :=�[k(t; �)℄Poisson Regression: Y (t)�Po(f(t) dt); f(t) :=�[k(t; �)℄Survival: S(t)� e�H(t) H(t) :=�[1f(0;t℄g(�)℄The new wrinkle is that the spae � of possible value of � is more ompliated than R
d. One repre-sentation is to identify a �nite integer-valued measure on X with the (superuous but onvenient)label J along with an ordered vetor fxjg0�j<J of the J (not neessarily distint) points to whihit assigns unit mass; thus � := 1[J=0X

J 3 � := (J ; fxjg0�j<J);the disjoint union of the J th Cartesian power XJ over all integers J � 0.2.1 DensitiesFinding \densities" is more subtle here. If dx is a �xed referene measure on X (perhaps Lebesguemeasure, if X � R
d), one possibility is to used� := 1XJ=01f�Jg(�) dx0 dx2 � � � dxJ�1as a referene measure on �. The Po��(dx)� distribution with mean measure �(dx) = �(x)dx) anthen be represented P (d�) = (�+)JJ ! e��+ Y0�j<J �(dxj)�+ = e��+J ! Y0�j<J �(dxj)where �+ � �(X), with density funtion (w.r.t. d�)P (�) = exp8<:��(X)� log J ! + X0�j<J log �(xj)9=; (6)Notie that in this representation the fxjg are ordered, even though P (d�) is symmetri; the J !fator aounts for the multiple labelings the same point might have.
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2.2 TransitionsTo implement MCMC in a multi-dimensional spae like � we must \jump" bak and forth amongthe disjoint subspaes XJ . The �rst implementation of suh a sheme (and the name \reversiblejumpMCMC", or RJ-MCMC) appeared in (Green 1995), although our treatment is rather di�erent.We must build a transition probability kernel Q(d�� j �) to generate proposed moves on � thatis transitive, irreduible, and aperiodi. Transitivity requires that we be able to reah any level
XJ from any other XI ; obviously it's enough to be able to inrement J � 0 and derement J � 1by one. Inrementing entails a probability distribution �(dx) for the \birth," whih we take tohave density funtion �(x); movement within XJ an be built from any onvenient Markov kernelq(dx� j x) on B� X, or even from a sub-Markov kernel (i.e., one for whih q(X j x) � 1| we justone an always extend it to be a Markov kernel on some ~X � X) if we regard a step \outside" of Xas a \death." Speify a stritly probability triplet1 p = (p�; p=; p+) with p�+p=+p+ = 1, a birthprobability density �(x) on X, and a sub-Markov kernel q(dx� j x); with these in hand we desribetransitions on � as follows. Beginning at � = (J ; fxjg0�j<J),B Birth step: with probability p+, draw an index 0 � j � J uniformly and a new pointx� � �(x)dx; set �� = (J+1; fx0; : : : ; xj�1; x�; xj ; : : : ; xJ�1g):D Death step: with probability p� and J � 1, \kill" a point| draw an index 0 � j < Juniformly and set �� = (J�1; fx0; : : : ; xj�1; xj+1; : : : ; xJ�1g):M Movement step: with probability p= and J � 1, draw 0 � j < J uniformly and a new pointx� � q(x� j xj) dx. If x� 2 X and �(x�) > 0, set�� = (J ; fx0; : : : ; xj�1; x�; xj+1; : : : ; xJ�1g);if x� 6= X (reall the sub-Markov transition may have q(X j xj) < 1) or �(x�) = 0, treat thisas the death of xj, as in step D above.Altogether the transition density w.r.t. d� is:Q(�� j �) = 8>>><>>>:B : 1J+1 p+�(x�)D : 1J [p� + p=q�(xj)℄M : 1J p=q(x� j xj) (7)where q�(x) := �1� q(X j x)�.2.3 Hastings RatioWe now onstrut the Hastings ratio H(�� j �) of Equation (5) from the ingredients in Equa-tions (6, 7). If L(�) is a likelihood funtion (or other expression for whih L(�)P (d�) is proportional1Atually it's possible to have p = p(J) depend on J ... onvenient to arrange p�(0) = p=(0) = 0, for example.5



to the intended stationary distribution for our hain| e.g., L � 1 to draw samples from the priordistribution itself), the Hastings ratio is:H(�� j �) = 8>>><>>>:B : �(x�)J+1 L(��)L(�) [p�+p=q�(x�)℄p+ �(x�)D : J�(xj) L(��)L(�) p+ �(xj)[p�+p=q�(xj)℄M : �(x�)�(xj) L(��)L(�) q(xj jx�)q(x�jxj) : (8)Note that we needn't have required that �(dx), �(dx), and q(dx j x�) all have densities with respetto some spei� measure dx, but we do need �(dx)� �(dx); to allow \death" moves from anywherein X, the birth distribution �(dx) must also have full support (so �(dx) � �(dx)). Also note thatthe M step is simply the ratio of posterior densities in the (ommon) ase of a symmetri proposaldistribution with q(y j x) = q(x j y).3 Examples3.1 Gamma RF in R
2The homogeneous Gamma random �eld �(ds) � Ga(�ds; �) on the unit square S = [0; 1℄2 hasin�nite L�evy measure �(du ds) = �e��uu�11fu>0gdu dson R�S. To use the methods of Setion (2) we must �rst approximate the distribution by one with�nite L�evy measure. One way is to selet a small number � > 0 and onstrut a random �eld withL�evy measure ��(du ds) = �e��uu�11fu>�gdu dson R� S, with �nite mass�+� := ��(R� S) = � Z 1� e��uu�1du = �E1(��);where E1(z) := R1z x�1e�xdx denotes Gauss's exponential integral funtion (Abramowitz and Ste-gun 1964, p. 228). We may view �� as a measure on X := R+ � S and, from a Poisson randommeasure H � Po(��(dx)), onstrut an approximate Gamma RF by setting�(A) = ZA �(ds) = ZZR+�A uN(du ds)�[�℄ = ZS �(s)�(ds) = ZZR+�S �(s)uN(du ds)3.1.1 Birth StepsWith a birth distribution �(dx) for x = (u; s) assigning independent exponentially distributedmagnitudes u � �+ Ex(�) and uniformly distributed loations s � Un(S), the L�evy measure � andbirth distribution � are mutually absolutely ontinuous, with Lebesgue density funtions�(x) = �e��uu�11f[�;1)�Sg(x) �(x) = �e��(u��)1f[�;1)�Sg(x)6



3.1.2 Movement Steps and Hastings RatiosAny symmetri Markov random walk on [�;1)� S (for example, one taking independent Gaussiansteps in eah of the three dimensions, with reeting boundary onditions at u � � and at 0 � si � 1)yields q�(x) � 0 and a symmetri q(x� j x) = q(x j x�); with unit likelihood L(x) � 1 this leads toH(�� j �) = 8>>><>>>:B : � p�� exp(��) p+ exp((���)u�)(J+1) u�D : � exp(��) p+� p� J ujexp((���)uj )M : exp ��(uj � u�)�(uj=u�)Conversely, independent normal random walks s�i j si � No(si; �2s) for loations (whih might stepoutside S, leading to a \death") and log-normal u� j u � LN(log u; �2u) for magnitudes (whih mightstep below u < �, again leaving the domain), renders a subMarkov transition withq�(x) = 1� �� log(u=�)=�u�� ���1� s1�s �� �� s1�s��� ���1� s2�s �� �� s2�s��q(x� j x) = 1�uu�'� 1�u log(u�u )�� 1�s'�s�1 � s�1�s �� 1�s'�s�2 � s�2�s �where x = (u; s) and x� = (u�; s�); here '(z) and �(z) denote the pdf and CDF of the standardNo(0; 1) distribution, respetively. Note our transition kernel q(x� j x) is subMarkov; we treatrandom walk steps that lead x� =2 S or u� < � as the death of a point at x. These (along withL(x) � 1) let us alulate the Hastings ratio H(�� j �) of Equation (8), all that's needed to generatea Markov hain f�tg and hene f�tg from the intended distribution:H(�� j �) = 8>>><>>>:B : � [p�+p=q(x�)℄� exp(��) p+ exp((���)u�)(J+1) u�D : � exp(��) p+� [p�+p=q(xj)℄ J ujexp((���)uj)M : exp ��(uj � u�)�4 Posterior ILM SamplingAs an alternative to the RJ-MCMC �-trunation approah of Setion (2), we an use the InverseL�evy Measure algorithm of Wolpert and Ikstadt (1998a,b) in whih a �xed number J of masspoints are generated. The lassi ILM approah begins by writing a L�evy measure � on X = R+�Sin semidiret produt form �(dx) = �u(dr) �s(ds j u)�+(r) = �u�(u;1)�� (t) = inf �r > 0 : �+(r) � t	 :7



Now �x J 2 N and draw the �rst J event times 0 < �1 < �2 < � � � < �J of a unit-rate Poissonproess. Set rj = � (�j)sj � �s(ds j rj)�(ds) = JXj=1 rjÆsj (ds):This sum with J = 1 would have exatly the target L�evy distribution; sine the frjg are drawnin dereasing order, with �nite J < 1, it inludes the J largest mass points and for that reasonan be more eÆient than some other approximate methods. For posterior sampling, a Metropolis-Hastings approah will be required| but, this time, with a �xed number J of mass points and sowithout need for reversible jumps.When both �u(dr) = �u(r) dr and �s(ds j u) = �s(s j u) ds have density funtions (wrt arbitraryreferene measures dr and ds on R+ and S, respetively), the prior pdf is available by hange ofvariables from that of the f�j = �+(rj)g:�1; : : : ; �J � e��J1f0<�1<���<�Jgd�1 � � � d�J )r1; : : : ; rJ � exp �� �+(rJ)�j�+0(r1) � � � �+0(rJ )j1f0<rJ<���<r1gdr1 � � � drJs1; : : : ; sJ � �s(s1 j r1) � � � �s(sJ j rJ) ds1 � � � dsJ :With this and the likelihood ratio in hand, a M-H sheme an be onstruted with only onventionalmoves of the frjg (preserving order) and the fsjg. Blok moves (in whih the entire vetor ~u isreplaed with another of the form � (~� )) are a good hoie in some problems. The Hastings ratiofor a move �! �� for � = (~u;~s) isH(�� j �) = L(��)L(�) 8<:e�+(rJ )��+(r�J ) JYj=1 �+0(r�j ) �s(s�j j r�j )�+0(rj) �s(sj j rj)9=; Q(� j ��)Q(�� j �) :4.1 Expliit Example: ILM for Gamma Random FieldsAgain we onsider the Gamma Ga(�ds; �) random �eld on S = [0; 1℄2. This time we use theILM algorithm, with reeting symmetri Gaussian random walk steps in sj 2 S and log-saleGaussian random walk steps in rj 2 R+. For this example �+(r) = �E1(�r) with derivative�+0(r) = ��r�1e��r, while Q(� j ��)=Q(�� j �) =Q(r�j =rj), soH(�� j �) = L(��)L(�) exp��[E1(�rJ )� E1(�r�J )℄ + �X(rj � r�j )� :Random walk steps are allowed to hange the ordering of the frjg; just sort after the proposedmove, to ensure that r�J = minnr�jo. Sine E1(z) � � log z � e for small z,h(�� j �) � logH(�� j �) � [`(�)� `(��)℄ + � log(r�J=rJ) + �X(rj � r�j )where `(�) = � logL(�). A good starting point is ~u = frjg, rj = exp(�e � j=�)=� (why?).8



4.2 Expliit Example: ILM for �-Stable Random FieldsFor 0 < � < 1, � 2 [�1; 1℄,  2 R+, and Æ = 0, a random measure �(ds) � StA(�; �; ds; 0) an beonstruted on (say) the unit interval [0; 1℄ by the ILM algorithm as�(ds) = Xj<1 rj�jÆsj (ds)for �0 = 0 and rj = (�j=�)�1=�; [�j � �j�1℄ iid� Ex(1)�j = (2�j � 1); �j iid� Bi�1; (1 + �)=2�sj iid� Un(S)where � = 2��(�) sin ��2 , or may be approximated by the �rst J terms of that sum. Here S = (0; 1)�f�1g with elements (sj; �j). For posterior sampling as in Setion (4), note �+0u (r) = ��r���1.For independent symmetri random walk (say, Gaussian) steps in rj on a log sale, and srw stepsin sj (say, Gaussian w/ reeting b), and �j = �1, the log Hastings ratio beomesh(�� j �) = `(�)� `(��) + �(r��J � r�J��) + � JXj=1 log(rj=r�j ) + log �1+�1��� JXj=1(��j � �j)=2;with rj = (�=j)1=� and �j = (2�j � 1), �j � Bi(1; (1 + �)=2) a good starting point.5 Dirihlet Random FieldsFor any �nite partition S = [�j of a �nite measure spae �S;F; �(ds)� with �+ � �(S) < 1, theDirihlet random �eld D � Di��(ds)� assigns random variables pj = D(�j) whose joint distributionis Dirihlet ~p � Di(~�) with parameter vetor ~� = f�jg, �j = �(�j). Dirihlet RFs are frequentlyused to model unertain probability distributions, beause they're easy to interpret (the mean andvariane are ED(A) = �(A)=�(X) and VD(A) = �(A)�(A)=�(X)2(1 + �(X)), so �=�+ is the\prior mean" and �+ quanti�es prior preision) and trivial to ompute with (they're onjugate forobservations Xj � D).A Dirihlet random �eld an be onstruted by normalizing the Gamma RF of Se. (3.1) or (4.1):
D(A) = �(A)=�(S)for A � S, with �(ds) � Ga��(ds); �� for any onstant � > 0 (say, one)| the onstant anelswhen we normalize.BUT| the Dirihlet has several unfortunate features that limit its utility. One is its disreteness (Dis a disrete distribution with probability one, so even if � has a density it is ertain that observationsfXng � D will feature ties), and another is the onstany of its preision �+, whih preludesassigning \vaguer" prior distributions in some parts of S than in others. The disreteness an beoverome by taking kernel mixtures R k(x; s)D(ds), at the expense of losing the omputationaltriviality, while the uniform preision an be overome by replaing the onstant � by a funtion�(s) above; the same omputational approah desribed in Setion (3.1) with Lebesgue measurereplaed by �(ds) and the onstant � by a funtion �(s), leading to�(dr ds) = �(ds)e��(s)r r�11fr>0gdrwill suÆe to generate prior and posterior distributions for a generalization of D(ds).9



ReferenesAbramowitz, M. and Stegun, I. A., eds. (1964), Handbook of Mathematial Funtions With For-mulas, Graphs, and Mathematial Tables, Applied Mathematis Series, volume 55, Washington,D.C.: National Bureau of Standards.Besag, J., Green, P. J., Higdon, D., and Mengersen, K. (1995), \Bayesian omputation and stohas-ti systems (with disussion)," Statistial Siene, 10, 3{66.Gelfand, A. E. and Smith, A. F. M. (1990), \Sampling-based approahes to alulating marginaldensities," Journal of the Amerian Statistial Assoiation, 85, 398{409.Geman, S. and Geman, D. (1984), \Stohasti relaxation, Gibbs distributions, and the Bayesianrestoration of images," IEEE Transations on Pattern Analysis and Mahine Intelligene, 6,721{741.Green, P. J. (1995), \Reversible jump Markov hain Monte Carlo omputation and Bayesian modeldetermination," Biometrika, 82, 711{732.Hastings, W. K. (1970), \Monte Carlo Sampling Methods Using Markov Chains and Their Appli-ations," Biometrika, 57, 97{109.Horn, R. A. and Johnson, C. R. (1990), Matrix Analysis, Cambridge, UK: Cambridge UniversityPress.Metropolis, N. C., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953),\Equations of state alulations by fast omputing mahines," Journal of Chemial Physis, 21,1087{1092.Tanner, M. A. and Wong, W. H. (1987), \The alulation of posterior distributions by data aug-mentation," Journal of the Amerian Statistial Assoiation, 82, 528{550.Tierney, L. (1994), \Markov hains for exploring posterior distributions (with disussion)," Annalsof Statistis, 22, 1701{1762.Wolpert, R. L. and Ikstadt, K. (1998a), \Poisson/gamma random �eld models for spatial statis-tis," Biometrika, 85, 251{267.Wolpert, R. L. and Ikstadt, K. (1998b), \Simulation of L�evy Random Fields," in Pratial Non-parametri and Semiparametri Bayesian Statistis, eds. D. K. Dey, P. M�uller, and D. Sinha,New York, NY: Springer-Verlag, Leture Notes in Statistis, volume 133, pp. 227{242.
10



Appendix: Inferene for Poisson Random MeasuresLet ��(dx) be a family of �nite nonnegative Borel measures on a omplete separable metri spae(\Polish" spae) X, indexed by � 2 �. In this setion we onsider the problem of �nding alikelihood funtion for �, upon observing a Poisson random �eld N(dx) � Po��(dx)�. Begin withthe assumption that some single �-�nite Borel referene measure �(dx) dominates ��(dx) for eah� 2 �, and that a regular onditional probability density funtion exists so that��(dx) = �(x; �)�(dx)for a Borel measurable funtion � : X��! R+.For any partition X = [�j into disjoint Borel sets with ��j ompat, eah �j(�) � ��(�j) and�j � �(�j) is �nite. The random variables Nj � N(�j) are independent, eah Poisson distributedwith mean �j(�), so the likelihood L(�) upon observing all the fNjg would be any nonnegativemultiple of L(�) =Yj ��j(�)NjNj ! e��j(�)�/ 8<:Yj ��j(�)�j �Nj9=; e�P �j(�)Enumerate the (random and ountable) support fxng of N(dx), and let jn be the index of thepartition element �jn ontaining xn. ThenL(�) = (Yn ��jn(�)�jn �Njn) e���(X)Now take suessive re�nements of the partition f�jg with diam(�j)! 0. Sine every Polish spaeis Radon, it follows that �jn(�)=�jn = ��(�jn)=�(�jn) onverges to �(xn; �), so! e���(X) Yn �(xn; �):Note that our requirement that eah �+(�) � ��(X) <1 was neessary for this to be well-de�ned.Also the formula remains orret even if, for some �, �� (and hene �) has atoms; in that ase someof the fxng may oinide. Both Bayesian and sampling-based inferene about � now depend on thedata only through the negative log likelihood funtion,`(�) = � logL(�) = �+(�)�X log �(xn; �):
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