EVENTS, RANDOM VARIABLES, AND SAMPLE SPACES

Colloquially a random variable is some quantity that depends on the outcome of some random experiment (toss of a die, draw from an urn, public opinion poll, laboratory measurement, etc.); we'll need to be a little more precise. A Sample Space is just the collection of possible outcomes of such an experiment; it's often denoted by the upper-case Greek letter \(\Omega \), and the possible outcomes themselves by lower-case \(\omega \)'s. The Random Variable, a "random quantity depending on the outcome...", is now seen to be a function \(X : \Omega \rightarrow \mathbb{R} \), for a Real-valued random variable, or more generally \(X : \Omega \rightarrow \mathcal{S} \), for a random variable taking values in some "state space" \(\mathcal{S} \).

An event in common speech is something that might happen, and then again might not; in probability theory we represent such a thing by the set of possible outcomes \(E \subset \Omega \) for which the event occurs. This allows us to use set notation to describe most of the usual combinations of events ("A and B" becomes the intersection \(A \cap B \), "A or B" becomes the union \(A \cup B \), "Not A" becomes the complement \(A^c = \{ \omega \in \Omega : \omega \notin A \} "), "At least one of \(\{A_i\} \)" becomes the countable union \(\bigcup_{i=1}^{\infty} A_i \), "A implies B" becomes \(A \subset B \); etc.). Be careful not to confuse outcome \(\omega \) with EVENT (subset of \(\Omega \), possibly containing infinitely-many outcomes \(\omega \)).

The collection of events we will consider is often denoted by \(\mathcal{F} \) or a nearby letter (\(\mathcal{E}, \mathcal{G},... \)); the biggest possible such collection would be the "power set" or set of all possible subsets of the sample space, sometimes denoted \(\mathcal{P}(\Omega) \) or \(2^\Omega \); in small problems (dice, coins, etc.) this works fine, but it turns out that it's "too big" for most problems with continuous distributions... so \(\mathcal{F} \subset 2^\Omega \) but \(\mathcal{F} \neq \Omega \). For technical reasons \(\mathcal{F} \) is required to have certain closure properties (for example, it must contain \(A^c \) for each event \(A \in \mathcal{F} \)) and so is what mathematicians call a "Sigma algebra" or "Borel Field"; this is often shortened simply to "Field" of events ("set of sets" would be too confusing!)

- **Sample Space**: \(\Omega = \{ \omega \} \), the set of possible outcomes of some random experiment;
- **Outcome**: \(\omega \in \Omega \), a single element of the Sample Space;
- **Event**: \(E \subset \Omega \), a subset of the Sample Space;
- **Field**: \(\mathcal{F} = \{ E : E \subset \Omega \} \), the collection of Events we'll consider;
- **Random Variable**: \(X : \Omega \rightarrow \mathcal{S} \), a function from the Sample Space \(\Omega \) to a State Space \(\mathcal{S} \);
- **State Space**: \(\mathcal{S} \), a space containing the possible values of a random variable—common choices are the integers \(\mathbb{N} \), reals \(\mathbb{R} \), \(k \)-vectors \(\mathbb{R}^k \), complex numbers \(\mathbb{C} \), positive reals \(\mathbb{R}_+ \), etc.;
- **Probability**: \(P : \mathcal{F} \rightarrow [0,1] \), obeying rules 1-3 below;
- **Distribution**: \(\mu : \mathcal{B} \rightarrow [0,1] \), where \(\mathcal{B} \subset \{ A : A \subset \mathbb{R} \} \) is the Borel sets (intervals, etc.).

Probabilities and Distributions

What is missing so-far is an assignment of Probability to those random events that "might happen and, then again, might not"... an assignment of a number \(0 \leq P[A] \leq 1 \) to each event \(A \in \mathcal{F} \) (NOT to each outcome \(\omega \in \Omega \)). The assignment must satisfy some rules consistent with our notions of probability... for example, we must have \(P[A] \leq P[B] \) if \(A \subset B \) (for then \(B \) certainly occurs when \(A \) does, so its probability must be no smaller); the usual definition of a Probability Assignment (or Measure) requires:

1. For any \(A \in \mathcal{F} \), \(0 \leq P[A] \leq 1 \);
2. \(P[\Omega] = 1 \);
3. For any sequence \(A_1, A_2, ... \) of disjoint events, \(P(\bigcup A_i) = \sum P[A_i] \).
The usual properties of probabilities follow from these rules and some work... see me for outside readings if this is unfamiliar or confusing.

The Distribution of a random variable X is just the assignment of probabilities to the events $X \in A$ for each set $A \subseteq S$, i.e., the specification of probabilities to sets of outcomes of X. For real-valued random variables it turns out that it’s enough to just specify the probabilities for events of the form $[X \leq t]$ (i.e., $X \in A_t$ for sets $A_t = (-\infty, t]$); the function these define is called the cumulative Distribution Function (or CDF) for X, usually denoted by upper-case $F(t) \equiv P[X \leq t] = P[X \in (-\infty, t]]$. If this is a continuous and differentiable function, its derivative $f(t) \equiv F'(t)$ is called the probability density function (or pdf) for X, and X is said to have a continuous distribution; if instead it’s piecewise constant, changing only by jumps of size p_k at the possible values x_k of X, then the function assigning $p_k = f(x_k)$ is called the probability function for X and X is called Discrete.

By definition, the probability assignment $A \mapsto P[X \in A]$ is the Probability Distribution of X; it’s easy to show that this assignment satisfies rules 1–3 above, so it’s a probability measure (often denoted μ_X) on B, the subsets of \mathbb{R}, telling what is the probability $\mu_X[A] = P[X \in A]$ that X will lie in each subset $A \subseteq S$ of possible values of X. For continuous and discrete random variables, respectively, the distributions are given by

$$\mu_X[A] = \int_A f(x) \, dx \quad \text{or} \quad \mu_X[A] = \sum_{x_i \in A} p_i.$$

The “same” random variable can be constructed in lots of different ways, with lots of different sample-spaces (and even different state spaces)— but the distribution μ_X is unique, whatever Ω we use. In fact, for real-valued random variables we can always use the canonical probability space (\mathbb{R}, B, μ_X), thinking of the “random experiment” as simply observing X, and the “possible outcomes” as all real numbers $x \in \mathbb{R}$; now the probability assignment is just the distribution, $\mu_X[A] = P[X \in A]$. Similarly for S-valued random variables we can always use the space $\Omega = S$ with its Borel sets $\mathcal{B}(S)$ and distribution μ_X; in particular, we’ll see later that a Stochastic Process can be thought of simply as an S^*-valued random variable for the path-space $S^* = \{x_t : T \to S\}$ of S-valued trajectories on T. Even though we won’t have density functions on infinite-dimensional spaces like S^*, this will allow us to construct stochastic processes with any desired distribution simply by building probability measures on the path space S^*.