Martingale Methods: Definitions & Examples
Karlin & Taylor, A First Course in Stochastic Processes, pp 238–253

MARTINGALE
We’ve already encountered and used martingales in this course to help study the hitting-times of Markov processes. Informally a martingale is simply a stochastic process \(M_t \) defined on some probability space \((\Omega, \mathcal{F}, P)\) that is “conditionally constant,” i.e., whose predicted value at any future time \(s > t \) is the same as its present value at the time \(t \) of prediction. Formally we represent what is known at time \(t \) in the form of an increasing family of \(\sigma \)-algebras \(\mathcal{F}_t \subset \mathcal{F} \), possibly those generated by a process \([X_s : s \leq t]\) or even by the martingale itself, \(\mathcal{F}_t = \sigma([M_s : s \leq t]) \), and require that \(E[|M_t|] < \infty \) for each \(t \) (so the conditional expectation below is well-defined) and that

\[
M_t = E[M_s | \mathcal{F}_t]
\]

for each \(t < s \). For discrete-time processes (like functions of the Markov chains we looked at before) it is only necessary to take \(s = t + 1 \), and we usually take \(\mathcal{F}_t = \sigma(X_i : i \leq t) \) and write

\[
M_t = E[M_{t+1} | X_0, \ldots, X_t].
\]

There are several “big theorems” about martingales that make them useful in studying stochastic processes:

Optional Sampling Theorem:
If \(\tau \) is a stopping time or Markov time, i.e., a random time that “doesn’t depend on the future” (technically the requirement is that the event \([\tau \leq t]\) should be in \(\mathcal{F}_t \) for each \(t \)), and if \(M_t \) is a martingale, and if either \(E[\tau] < \infty \) or if \(\{M_t\} \) is uniformly integrable, then

\[
M_\tau = E[M_\infty | \mathcal{F}_\tau]
\]

and in particular \(x = E[M_\tau | M_0 = x] \). More generally, if \(\{\tau_n\} \) is an increasing sequence of martingales with \(E[\tau_n] < \infty \) or \(\{M_t\} \) uniformly integrable, then \(Y_n = M_{\tau_n} \) is a martingale.

Maximal Inequalities:
If \(M_t \) is a martingale and if \(t \leq \infty \) then

\[
P[\sup_{s \leq t} M_s \geq \lambda] \leq \frac{1}{\lambda} E[M_t^+] \\
P[\min_{s \leq t} M_s \leq -\lambda] \leq \frac{1}{\lambda} (E[M_t^+] - E[M_0]) \\
E[\sup_{s \leq t} |M_s|^p] \leq \left(\frac{p}{p-1} \right)^p \sup_{s \leq t} E[|M_s|^p] \quad (p > 1) \\
E[\sup_{s \leq t} |M_s|] \leq \frac{e}{e-1} \sup_{s \leq t} E[|M_s| \log^+ (|M_s|)] \quad (p = 1)
\]

Martingale Path Regularity:
If \(M_t \) is a martingale and \(a < b \) denote by \(N_{[a,b]}^M \) the number of “upcrossings” of the interval \([a, b]\) by \(M_s \) prior to time \(t \), the number of times it passes from below \(a \) to above \(b \); then

\[
E[N_{[a,b]}^M(t)] \leq \frac{E[M_t^+] + |b|}{b-a}
\]

and, in particular, martingale paths don’t oscillate infinitely often—thus they have left and right limits at every point. This is also the key lemma to prove:
Martingale Convergence Theorems:
Let M_t be a martingale. Then:

For any martingale M_t, there exists an RV M_{∞} such that
$$\lim_{t \to \infty} M_t = M_{\infty} \text{ a.s.}$$ \hspace{1cm} \text{(Backwards MCT)}

If also $\sup_{s<\infty} E[M_s^+] < \infty$, then there exists an RV M_{∞} such that
$$\lim_{t \to \infty} M_t = M_{\infty} \text{ a.s.}$$ \hspace{1cm} \text{(Forwards MCT)}

If also $\{ |M_s|^p \}$ is uniformly integrable, then $M_{\infty} \in L^p$ and
$$\lim_{t \to \infty} M_t = M_{\infty} \text{ in } L^p.$$ \hspace{1cm} \text{(L^p)}

Martingale Problem for Continuous-Time Markov Chains:
Let Q_{jk} be a (possibly time-dependent) Markov transition matrix on a state space S. Then an S-valued process X_t is a Markov chain with transition matrix $Q_{jk}(t)$ if and only if, for all functions $\phi : S \to \mathbb{R}$, the process
$$M_{\phi}(t) = \phi(X_t) - \phi(X_0) - \int_0^t \left[\sum_{j \neq i} Q_{ij}(s) [\phi(j) - \phi(i)] \right] ds$$

is a martingale. Similar characterizations apply to discrete-time Markov chains and to continuous-time Markov processes with non-discrete state space S. This is the most powerful and general way known for constructing Markov processes.

Doob's Martingale:
Let Y be any \mathcal{F}-measurable L^1 random variable and let $M_t = E[Y \mid \mathcal{F}_t]$ be the best prediction of Y available at time t. Then M_t is a uniformly-integrable martingale.

To summarize, martingales are important because:

1. They have close connections with Markov processes;
2. Their expectations at stopping times are easy to compute;
3. They offer a tool for bounding the maximum and minimum of processes;
4. They offer a tool for establishing path regularity of processes;
5. They offer a tool for establishing the a.s. convergence of certain random sequences;
6. They are important for modeling economic and statistical time series which are, in some sense, predictions.

Examples:

1. Partial sums: $S_n = \sum_{i=1}^n X_i$
2. Stochastic Integral: Let X_n be an IID Bernoulli sequence with probability p; you can bet any fraction F_n you like of your (previous) fortune M_{n-1} at odds $p : 1 - p$, so your new fortune is $M_n = (1 - F_n(1 - X_n/p))$. If $F_n \in \sigma[X_1, \ldots, X_{n-1}]$, M_n is a martingale. Note that
$$M_n = M_0 + \sum_{i=1}^n F_i(M_{i-1}[Y_n - Y_{n-1}])$$

for the martingale $Y_n = (S_n - np)/p$.
3. Variance of a Sum: $M_n = (\sum_{i=1}^n Y_i)^2 - n\sigma^2$, where $E[Y_j] = \sigma^2 \delta_{ij}$
4. Radon-Nikodym Derivatives: $M_n(\omega) = E[f(\omega) \mid \sigma(\frac{1}{p} \mid \frac{1}{p})])$

Submartingales: $E[X_{t+}^+] < \infty$, $E[X_s \mid \mathcal{F}_t] \geq X_t$, $X_t \in \mathcal{F}_t$. Jensen’s inequality: if ϕ convex, then $\phi(X_t)$ is a submartingale if $E[\phi(X_t)^+] < \infty$.

Page 2